
Transactional Cloud Applications: StatusQuo, Challenges, and
Opportunities

Rodrigo Laigner
University of Copenhagen
Copenhagen, Denmark

rnl@di.ku.dk

George Christodoulou
Delft University of Technology

Delft, Netherlands
g.c.christodoulou@tudelft.nl

Kyriakos Psarakis
Delft University of Technology

Delft, Netherlands
k.psarakis@tudelft.nl

Asterios Katsifodimos
Delft University of Technology

Delft, Netherlands
a.katsifodimos@tudelft.nl

Yongluan Zhou
University of Copenhagen
Copenhagen, Denmark

zhou@di.ku.dk

Abstract
Transactional cloud applications such as payment, booking, reser-
vation systems, and complex business workflows are currently
being rewritten for deployment in the cloud. This migration to the
cloud is happening mainly for reasons of cost and scalability. Over
the years, application developers have used different migration
approaches, such as microservice frameworks, actors, and stateful
dataflow systems.

The migration to the cloud has brought back data management
challenges traditionally handled by database management systems.
Those challenges include ensuring state consistency, maintaining
durability, and managing the application lifecycle. At the same time,
the shift to a distributed computing infrastructure introduced new
issues, such as message delivery, task scheduling, containerization,
and (auto)scaling.

Although the data management community has made progress
in developing analytical and transactional database systems, trans-
actional cloud applications have received little attention in database
research. This tutorial aims to highlight recent trends in the area
and discusses open research challenges for the data management
community.

CCS Concepts
• Information systems → Data management systems; • Com-
puter systems organization → Distributed architectures.

Keywords
transaction processing, data management, cloud computing

ACM Reference Format:
Rodrigo Laigner, George Christodoulou, Kyriakos Psarakis, Asterios Kat-
sifodimos, and Yongluan Zhou. 2025. Transactional Cloud Applications:
Status Quo, Challenges, and Opportunities. In Companion of the 2025 In-
ternational Conference on Management of Data (SIGMOD-Companion ’25),
June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3722212.3725635

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725635

1 Introduction
In recent years, many applications such as Customer Relationship
Management (CRM), reservation, and payment systems have been
migrated to the cloud to take advantage of lower costs and elasticity.
These applications were developed asmonoliths, typically following
the three-tier application architecture (presentation, application,
data) [13]. In this architecture, business logic is implemented inside
the application tier, while all data management takes place in the
data tier, typically served by a database management system.

When migrating such applications to the cloud, developers need
to split the functionality of a monolithic application to enable scal-
able deployment and development efficiency. This approach in-
volves splitting monolithic applications into smaller and indepen-
dent components that can be deployed and scaled separately, each
serving requests as services. This design termed the microservice
architecture, is widely adopted for migrating applications to the
cloud. In the microservice architecture, each microservice is respon-
sible for managing its own data (data encapsulation). Furthermore,
implementing complex workflows spanning multiple microservices
requires messaging and orchestration.

The emergence of cloud computing as a key paradigm for soft-
ware and infrastructure as a service has prompted decision-makers
and software teams to rethink their strategies for developing, de-
ploying, maintaining, and modernizing their applications. In par-
ticular, researchers and industry are currently developing new pro-
gramming models, data management methods, service commu-
nication models, as well as application deployment and lifecycle
practices to exploit the low-access barrier to an unprecedented
abundance of computing resources provided by the cloud.

To better align with the goal of on-demand, fine-grained resource
provisioning enabled by the cloud and application performance
requirements, modular software architectures, such as microser-
vices, distributed application frameworks (e.g., Orleans [16], Akka
Serverless) and the serverless computing paradigm, such as AWS
Lambda [10], emerged as popular alternatives in the cloud applica-
tion development landscape.

At the same time, microservices and application runtimes forgo
key advantages that monolithic applications have relied on for
decades: the delegation of state management, failure recovery, and
consistency guarantees to database management systems (DBMS).
In modern microservice architectures, these responsibilities are
intertwined with the application logic, mixing state management,

829

https://orcid.org/0000-0003-2771-7477
https://orcid.org/0000-0002-2104-565X
https://orcid.org/0000-0002-3017-5704
https://orcid.org/0000-0002-6717-2945
https://orcid.org/0000-0002-7578-8117
https://doi.org/10.1145/3722212.3725635
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3722212.3725635
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722212.3725635&domain=pdf&date_stamp=2025-06-22


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Rodrigo Laigner, George Christodoulou, Kyriakos Psarakis, Asterios Katsifodimos, & Yongluan Zhou

messaging, and coordination into the application layer. From the
perspective of the database community, the situation resembles
the early days of computing, when developers relied on ad hoc,
application-level transactions to maintain consistency [47].

In the last few years, the database community has focused on
building and improving individual components used in cloud appli-
cations, such as serverless database systems and stateful functions.
However, despite the pressing need for application migration to
the cloud, the landscape of runtimes for transactional Cloud ap-
plications remains sparse. The programming paradigms and avail-
able systems differ substantially, each having key strengths and
limitations; a characterization of challenges related to database
research is still missing. With this tutorial, we aim to explore the
design challenges, clarify key differences between cloud program-
ming paradigms, and highlight open problems and opportunities
to evolve the landscape of cloud application runtimes.

2 Tutorial Overview
In this tutorial, we propose a taxonomy (section 3) that centers
around programming models, state management, and application
lifecycle to tame the highly unstructured and heterogeneous cloud
application landscape. The taxonomy reflects the building blocks
that practitioners use and sets the stage to explore the state of prac-
tice for developing transactional applications in the cloud, along
with their different designs and limitations. We then address open
issues and research opportunities, highlighting how the database
community can play a pivotal role in transforming the landscape
of how cloud applications are built in the future.

Tutorial Outline (3 hours)

• Context and motivation (45 minutes)
– Introduction and context
– From monoliths to cloud-native applications

• Building blocks (45 minutes)
– Programming models
– State management
– Messaging

• Requirements (45 minutes)
– Fault-tolerance
– Application lifecycle
– Scalability

• Future directions (45 minutes)
– Open problems
– Research opportunities

Target Audience. The target audience of this tutorial includes
PhD students, researchers, and practitioners of different roles (e.g.,
software and data architects and engineers) who intend to obtain a
clear overview of the state-of-the-art cloud application development
landscape and its implications for data management. The tutorial
is self-contained and provides the background on scalable cloud
applications; no prior knowledge of systems for cloud applications
is required. However, familiarity with application architectures
helps one understand the materials.

3 Building Blocks
The programming abstractions offered by systems for developers
developing transactional cloud applications are centered around
three main building blocks, as shown in Figure 1: 𝑖) programming
models (§ 3.1), with a focus on their parallelization primitives and
how practitioners are building such applications; 𝑖𝑖) messaging
(§ 3.2) with focus on different ways of exchanging messages and
performing remote procedure calls and finally; 𝑖𝑖𝑖) state manage-
ment (§ 3.3), with a focus on transactions and state consistency
across services and scalability. Their interplay leads to trade-offs
concerning programmability, consistency, and performance, as re-
cent findings suggest [19, 39].

3.1 Programming Cloud Applications
Programming models for distributed systems has been a long-
standing line of research [9, 11, 12, 65, 67]. In the context of cloud
applications, we identify that programming models play a crucial
role in key system aspects, including but not limited to state and
message management, fault tolerance, lifecycle management, and
scalability. The status quo is the use of microservice frameworks
(e.g., Java Spring [3], Python Flask [4]) and emerging programming
models, namely Actors (e.g., Akka [1], Orleans [16]) and Stateful
Functions (e.g., Flink Statefun [59], Azure Durable Functions [15]),
all differing significantly in system model, abstractions, and guar-
antees offered to developers.

Therefore, we kick off this tutorial by discussing the variables
that drive developers to decide on a programming model, namely:
(𝑖) the programming paradigm, which relates to the application
abstractions exposed to users (e.g., functions, actors, or objects);
(𝑖𝑖) code modularity, which includes not only how program mod-
ules cooperate but also how application state is partitioned and
encapsulated; and (𝑖𝑖𝑖) concurrency & transactional semantics.

Note that this tutorial does not aim to provide in-depth analysis
and formal semantics of models; rather, it focuses on how they
fit in the cloud landscape and the main limitations of the systems
enabling them.
Microservice Frameworks. To reap the benefits of parallel pro-
cessing and loose coupling, the prevalent approach is functionally
partitioning the application logic and state into independent com-
ponents that communicate with each other via synchronous or
asynchronous messages [50], called microservices. Microservice
frameworks, such as Spring Boot (Java) [3], Flask (Python) [4], and
Dapr (C#/.NET) [2], provide tools, libraries, and structures to help
developers build microservices. These frameworks often include
functionalities like Object-Relational Mapping for database inter-
actions, service communication using REST or message queuing,
and retrying features for fault tolerance. Each microservice built
with such frameworks often employs a multi-threaded application
server. Concurrency control and data consistency management
are often provided by the underlying database system used by the
component and the configured isolation level.
The Actor Model. The actor model is a programming model for
concurrent and parallel computation in distributed systems [8].
An actor models a sequential process that performs transforma-
tions on the local state based on incoming messages. Actor systems
are formed by a composition of actors, which communicate via

830



Transactional Cloud Applications: StatusQuo, Challenges, and Opportunities SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Messaging State 
Management

REST
Queues

TCP

External/
Embedded

Decentralized
Centralized/ Fault tolerance

Consistency
Application lifecycle Management

Runtime

Programming 
model

Actors

Dataflows

Microservices

Cloud Functions

Figure 1: Building blocks and requirements for transactional cloud applications.

asynchronous message-passing. Concurrency in actor systems is
achieved by pipelining and dynamic creation of actors [8]. Tradi-
tional actor systems allow programmers to develop systems using
low-level primitives by using actor IDs and prescribing their physi-
cal locations.

Virtual actors [16] are an extension of the traditional actor model
that provides location transparency without forcing developers
to deal with actor allocation in a cluster, life-cycle management,
explicitly creating and tearing down actor instances, as well as
failure transparency. It is currently found in popular distributed
application frameworks like Orleans [16] and Dapr [2].
Cloud Functions.With the emergence of serverless computing [41],
a new cloud paradigm called Function-as-a-Service (FaaS) [15, 61]
rose in popularity. In FaaS, developers build applications as a col-
lection of functions. Function executions are triggered by external
events, such as clicks or invocations from other functions, allowing
for function workflow compositions.

Initially, FaaS offerings targeted workloads with small to mod-
erate I/O and communication, demotivating offering data models
and consistency guarantees on operations within a single func-
tion or cutting across functions [58, 69]. More recently, though,
there has been increasing interest in extending the FaaS paradigm
to applications that access state intensively, called Stateful-FaaS
(SFaaS) [21, 35, 52, 58, 69]. In SFaaS, developers also write programs
based on composing functions and enjoy a key-value interface to
access the global application state. Apart from the shared state
interface, the programming, execution, and deployment model re-
sembles Virtual Actors.
Stateful Dataflows. The dataflowmodel prescribes that an applica-
tion is represented as a data flow graph. That involves decomposing
programs into independent processing units. Organized as Directed
Acyclic Graphs (DAGs), processing units (nodes) exchange data via
message streams (edges). Dataflows have been mainly applied as
the programming model for analytical batch and stream process-
ing systems like Flink [17]. In these systems, processing units are
framed as operators that can perform either stateful (e.g., joins, ag-
gregates) or stateless (e.g., map, filter) operations. Message streams
can be partitioned and assigned to different operator instances that
execute concurrently. Stateful operators typically do not share state,
preventing concurrency issues and enhancing parallelism.

However, the dataflow model has two main issues regarding its
use for transactional cloud applications. First, dataflow systems
are typically programmed using functional programming-style
dataflow APIs, requiring developers to rewrite cloud applications
to align with the event-driven dataflow model. While many cloud
applications can be adapted to this paradigm, doing so demands

significant programmer training and effort. Second, implementing
transactions on top of dataflows, namely transactions that span
multiple services with serializable guarantees, is still an open prob-
lem [22, 51, 59, 71].

3.2 Messaging
For any two components of a cloud application to communicate,
a form of remote procedure call (RPC) is required, i.e., a way for
a component to call a function on another remote component. In
the past, RPC has taken multiple forms, such as Java’s RMI [48] or
CORBA’s OMG [63]. Nowadays, most applications opt for either
using REST APIs or message queues. We detail those below.
REST and gRPC. Built over HTTP (or HTTP/2), REST and gRPC
are among the most popular ways to implement remote procedure
calls for messages exchanging in microservice architectures. HTTP-
based protocols [34] are typically stateless and cannot provide
guarantees of message delivery. Thus, applications requiring mes-
sage delivery guarantees must ensure these at the application level.
Independently of the HTTP protocol adopted, a unique ID (e.g., in
the form of an idempotency key [30]) is traditionally leveraged to
prevent the execution of non-idempotent operations for incoming
duplicated messages. Messages are often duplicated in two cases:
partial failures in the sender side and redelivery after a timeout.
However, uniqueness ID guarantee and subsequent detection of
duplicated messages are still the responsibility of applications [24],
adding to the complexity of developing cloud applications.
Message Queues.Message queues (e.g., Apache Kafka [37], Rab-
bitMQ [5], RedPanda [6], etc.) are typically used to implement
asynchronous applications. The sender first pushes a message into
a queue, the queue persists the message, and the receivers asyn-
chronously pull messages from the queue to consume them. Produc-
ers and consumers are decoupled in time, facilitating the support
to partial failures [60]. On the other hand, receivers require ac-
knowledging the consumption of messages. Despite the apparent
simplicity, applications must coordinate the message processing
and subsequent acknowledgment to prevent the execution of non-
idempotent operations, a challenging task for many developers [39].
Relation of Messaging & State. As described above, an applica-
tion state mutation depends causally on the arrival of a message.
The operations over the state resulting from an incoming message
must reflect in the receiver’s state exactly once, characterizing the
exactly-once processing guarantee. In sum, this means that the
sender should be able to re-send messages to ensure the receiver
has received them and, if a message is received multiple times, the
receiver should be able to deduplicate them.

831



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Rodrigo Laigner, George Christodoulou, Kyriakos Psarakis, Asterios Katsifodimos, & Yongluan Zhou

3.3 State Management
The state of an application usually refers to an application’s data
(e.g., the contents of a shopping cart or a bank account) that impacts
its functionality and responses to client requests. Orthogonally to
programming models and messaging, state management involves
the placement and movement of data across components and strate-
gies to make data durable and consistent. As depicted in Figure 1,
state management in cloud applications depends on two main de-
cisions: 𝑖) whether the state will be managed using an embedded
approach (residing within the application runtime) or an external
system, such as a database or a blob store, and 𝑖𝑖) if the state access
will be centralized or decentralized. In a centralized approach, the
system manages the whole state in a unified way. In a decentral-
ized approach, every subcomponent (e.g., individual operators in a
stream processing system) handles its state independently. In this
section, we discuss the state management design space in cloud
applications.
Microservices. There are two approaches to manage state in mi-
croservice architectures [39]: 𝑖) shared database, where data is
logically separated (e.g., through private tables or distinct schemas),
sharing database resources (i.e., centralized database); and 𝑖𝑖) data-
base per service (i.e., decentralized), where each service enjoys a
dedicated database server, ensuring physical data isolation.

Physical isolation offers reduced coupling and independent scal-
ability at the expense of higher complexity and infrastructure costs.
On the other hand, a physically centralized database can impact
teams by sharing database resources and artifacts (e.g., memory and
disk resources, locks, or latches), jeopardizing performance isola-
tion and application upgrades, respectively. Note that microservice
architectures typically opt for the external approach to data man-
agement (§ 1).
Actors. Actor systems enforce logical state isolation, i.e., each actor
manages and mutates its state. To this end, they often leverage lan-
guage runtime and framework support to decouple actor calls from
the actual execution (i.e., actor instantiation and memory address),
inhibiting users from dealing with resource-sharing concerns [42].
Although actors typically keep their state private in main memory,
some actor frameworks offer state management APIs that allow
developers to store memory-resident states in durable storage [45].
Updates to an actor’s state are only possible by messaging the actor.
Depending on the actor system, mapping actors to servers can be
both manual or dynamic [16]. Although it does not often affect
how users operate over the actor state, actor placement can impact
performance. In any case, data freshness guarantees are tied up to
the most recent actor communication.
Cloud Functions. There are two dominant models for state man-
agement in the FaaS paradigm: private or shared state [58]. While
in the former, the state of a function is modeled as an object that is
tied to a given function, in the latter, functions are free to access
any object, subject to the concurrency model imposed by the FaaS
execution platform.

FaaS systems often ensure function invocations are scheduled
in an individual computational resource, such as a container or
a virtual machine [41]. In the first case, whenever a function is
triggered, the corresponding state is brought from disaggregated

storage to the memory of the compute nodes assigned to run the
respective function, all transparent to user code. In the second case,
operations on shared state necessarily incur network round trips.
Dataflows. In most distributed dataflow systems, the application
state is decentralized by design [17]. Typically, operators are sched-
uled for execution in separate nodes and rely on embedded LSM-
based key-value stores like RocksDB [23] as a local state. Whenever
the operator’s state exceeds the local storage capacity, the state
must be checkpointed, and the associated operator must be mi-
grated to another node with sufficient storage capacity. Recently,
there has been increasing interest in using tiered storage to battle
scenarios where operators’ states exceed local node storage [44, 55].
In this case, cloud object storage systems like S3 are used not only
for checkpointing states [17] but also to store operators’ states.
It is worth noting that, unlike service-based architectures, state
management in dataflow systems is transparent to developers.

3.4 Discussion
It is entirely possible to have a combination of programming models
and state management primitives. For instance, Orleans can make
use of an external database to store actor state, while there are
dataflow engines that may store their state, instead of internally,
to an external database system [31]. Although these approaches
depart from the strict limits of the programming model or architec-
ture at hand, they are valid deployment scenarios that are used in
practice. In addition, low-latency microservices may need to embed
a state to enhance data locality. Typically, a cache (e.g., Redis or
Hazelcast IMDG) is used to speed up state retrieval, blurring the
line between embedded and external state management. In any
case, while mixing and matching different systems and approaches,
deployments that go beyond the traditional settings also come with
consequences in terms of fault tolerance and scalability, which will
be discussed in the next section.

4 Requirements
In this section, we discuss the cross-cutting requirements of transac-
tional cloud applications, namely: 𝑖) fault-tolerance (§ 4.1); 𝑖𝑖) con-
sistency (§ 4.2) and 𝑖𝑖𝑖) application lifecycle management (§ 4.3).

4.1 Fault-tolerance
Microservices. Fault tolerance in microservices is achieved by
making the application logic stateless and leaving state handling
to an external database. Therefore, as long as a database of a given
service is alive, the service operates normally. In case of failure at the
stateless (application logic) microservices side, it is enough to restart
a new service and connect to the same database. Although fault-
tolerant by design, microservices may pose issues concerning state
consistency due to the lack of a strong message delivery guarantee
or transactional guarantee for multi-service workflows.
Actors.Modern actor systems have traditionally empowered three-
tier architectures [16, 42], so developers checkpoint actor states to
an external DBMS to ensure durability. As actor frameworks do
not impose a database deployment model, ensuring performance,
access, and failure isolation at the database tier is a non-trivial task
at the hands of developers. On the other hand, actor frameworks like

832



Transactional Cloud Applications: StatusQuo, Challenges, and Opportunities SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Orleans offer failure transparency by migrating actors across nodes
in the presence of partial failures [16]. However, weak message
delivery semantics and lack of transactional guarantees can leave
actor states inconsistent after failures (§ 4.2).
Stateful Dataflows. For recovery, dataflow systems rely on check-
pointing and logging mechanisms. Checkpoints in a distributed
environment can be either independent per worker or in coordi-
nation by using a protocol [18]. Checkpointing ensures that the
entire state is saved in (external) durable storage, and logging keeps
track of all the data accesses between checkpoints. On failure, the
system can retrieve its state by reloading the latest checkpoint,
recalculating the state based on the actions saved in the log, and
continuing from where it was left off.

4.2 Consistency
The consistency models in distributed systems reason about reads
and writes on shared state and their real-time order guarantees
across processes [60]. In cloud programming paradigms, though,
we observe that the consistency models are inherently driven by
the enabler systems’ communication model and state management
properties.
Microservices.Distributed applications designed throughmicroser-
vice architectures often remount the idea of the BASE model [50],
characterized by eventually consistent application partitions through
queuing operations [33]. Practitioners also refer to this eventual
consistency model through sagas [28] or patterns like orchestration
and workflows [7].

Microservices often avoid distributed commit protocols to decou-
ple components [39]. That would involve using language-specific
libraries and implementing the protocol phases in each microser-
vice, a complex and error-prone task for general developers. Be-
sides, enabling the protocol across services is often impossible due
to the lack of library support across heterogeneous programming
languages and databases [36]. Most importantly, directly access-
ing data items in external services may break the desired state
encapsulation, while the blocking nature of traditional protocol
implementations affects performance.
Actors.With at-most-once messaging delivery guarantees by de-
fault, weak consistency across components is a popular design
choice in actor-based applications. Some actor systems like Orleans
allow customizable timeouts for retries to achieve at-least-once
delivery. Statefun differs from Orleans in managing state updates
and messages in an integrated manner, transparently rewinding
the application state to a previously consistent checkpoint in case
of a delivery error. Therefore, it achieves exactly-once processing
and atomicity as a consequence. However, there is no transactional
isolation across Statefun entities.

To enable transactional serializability in Orleans, users must uti-
lize the Transactions API [46]. Apart necessitating porting the actor
attributes to opaque objects [42], it has been shown to introduce a
significant performance penalty according to recent experimental
evaluations [38, 43], demotivating broader adoption.
Cloud Functions.Cloudburst enriches functionswith causally con-
sistent shared state accesses through a key-value abstraction [58].
Durable functions [14], in the context of Azure Durable Functions

service, enhance FaaS with the ability to model entities (i.e., typed
objects) as state abstractions for function manipulation, a richer
state management abstraction than traditional FaaS offerings. Fur-
thermore, individual function operations are atomic and enjoy
exactly-once guarantees, guaranteeing atomicity in function com-
positions. Users must acquire and release locks explicitly to ensure
transactional isolation on operations involving multiple entities
(e.g., transfer money between account entities). However, there is
no support for transactional isolation across functions.

Another category of Cloud Function systems goes beyond by pro-
viding transactional serializability on computations cutting across
functions [35, 69]. However, recent work [52] has found challenges
in supporting large-scale, complex transactional applications like
TPC-C in existing state-of-the-art SFaaS systems.
Stateful Dataflows. The dataflow programming model rose in pop-
ularity due to stream processing engines with support to exactly-
once processing guarantees [17, 68]. Exactly-once guarantees elim-
inates the need for fault-tolerant code in the application since the
engine transparently handles failures. However, exactly-once pro-
cessing guarantees alone cannot ensure transactional isolation.

4.3 Application Lifecycle Management
ResourceManagement. The programming abstractions offered to
developers (§ 3.1) also play a key role in application lifecycle man-
agement. In microservice frameworks, application maintainers are
in charge of deploying services, detecting failures, and implement-
ing recovery routines. These implicitly include the objects managed
by the application at run-time, complexities that only exacerbate
the existing challenges of maintaining consistent application states
(§ 3.3). These challenges motivated the development of distributed
frameworks that transparently manage the lifecycle of applica-
tions. Serverless computing and FaaS offer transparent resource
provisioning, function scheduling, failure handling, and elasticity
to application maintainers. However, challenges associated with
cold starts, execution performance, and costs undermine a wider
adoption of the FaaS paradigm in application architectures [41].
Application Evolution. The evolution of applications is a key
concern in the software engineering lifecycle, and it is no different
in cloud applications [54, 66]. In a distributed environment, this
includes, but is not limited to, the deployment, upgrading, and dep-
recation of components, as well as changes in the data and event
schema. Surprisingly, support for application evolution in cloud
applications is limited, and upgrades are often handled via ad-hoc
approaches that rely on the expertise of application maintainers
for correctness. In this tutorial, we cover the application evolu-
tion space for service-oriented architectures, actors, and dataflow
systems.

5 Open Problems & Research Opportunities
In this section, we describe a set of open problems in programming
models (§ 5.1), state and messaging (§ 5.2) and benchmarks (§ 5.3).

5.1 Programming Models & Systems
The variety of programming models available, along with the asso-
ciated trade-offs in designing applications, such as data partitioning,

833



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Rodrigo Laigner, George Christodoulou, Kyriakos Psarakis, Asterios Katsifodimos, & Yongluan Zhou

access, and storage, concurrent application logic execution, fault
handling, upgrade support, guarantees during crashes and network
partitions, pose challenges to application developers in deciding
for an ideal model. Another factor that only exacerbates these chal-
lenges is the proliferation of terms like entities or objects [7, 25, 59],
workflows [2, 7], durable [7], stateful [7, 25, 52, 59], reliable [25],
and virtual [2, 16], which are not consistent across systems since
they express varied guarantees for applications.

Apart from the dataflow and actor models [8], and more recently
Durable Functions [15], many programming models used in the
cloud today are not formalized. The lack of formalizations and
semantics of programming models hinders the ability to reason
about a cloud application’s desirable properties (such as safety,
liveness, and consistency), a key impediment to advancing cloud
programming. Another direction that can mitigate some of these
concerns is via declarative programming. Ongoing work in this
realm includes stateful entities [53], HydroLogic [20], and event-
based constraints [40].

Furthermore, systems should be designed to enable developers to
effectively perform traditional software engineering activities. Lim-
itations with debugging, application evolution, and observability
are additional factors that demotivate the use of systems for cloud
programming. An open question is whether it is possible to devise
a programming model and system with transparent parallelization,
scalability, and consistency.

5.2 State & Messaging
Data Model. Programming models used in the cloud often provide
opaque state management abstractions [16, 32, 42, 53]. To fully
realize the benefits of serverless computing, it is key that program-
ming abstractions for the cloud offer not only formal semantics
but evolve to allow users to operate with richer data models and
express cross-component data invariants [20] that are popular in
practice [38], not jeopardizing state encapsulation.
Disaggregation. In the same line of industry-strength cloud-native
database [62] and stream processing systems [29, 44], disaggregated
storage [64] can be leveraged in cloud programming abstractions
to support ever-growing data that applications process in the cloud.
That must account for performance, access, and failure isolation
properties, abstracting away these concerns from application code.
Although most FaaS architectures provide disaggregated storage
by design [41], challenges inherent to composing applications via
ephemeral functions and shared state access, hindering programma-
bility and encapsulation of states of cloud applications, respectively,
are still present.

Most microservice architectures adopt persistent and asynchro-
nous communication via message queue systems [60], with the
message layer being disaggregated by design. However, considering
most cloud applications rely on language runtimes such as Java’s
JVM and .NET’s CLR, optimizing runtimes for cloud applications
could focus on optimizing message transport, processing, storage,
and recovery, considering the operating system and application
interplay.
Consistency. Traditional approaches such as SAGAs [28] and
OpenXA [57] allow for coordinating consistency guarantees across
microservices. More recent work [26] introduces causal consistency

for microservice architectures. Cross-engine transactions [70] is
a promising approach since it operates at a lower level than the
application. However, implementations should avoid exposing pri-
vate encapsulated data and protocol details in application code.
Coordinating with external, often legacy, systems is very common
in cloud applications that developers currently handle in an ad-hoc
fashion.

5.3 Workloads & Benchmarks
Benchmarking a distributed cloud application for performance and
even correctness is largely a task that takes place in an ad-hoc
fashion at the moment. Efforts such as DeathStar [27] have been
used to evaluate distributed cloud application frameworks [35, 69]
alongside TPC-C [52]. In addition, despite recent efforts to bench-
mark cloud applications [27, 49, 72], most benchmarks are oblivious
to key aspects of data management. At the same time, traditional
metrics such as throughput and latency used to benchmark OLTP
and OLAP systems may not suffice emerging cloud programming
systems alone. Modeling request arrivals should consider systems’
design goals and the cloud serving model used [56].

The use of event streams as a paradigm to compose applications
and the presence of data invariants, transactional guarantees, data
replication, and querying in real-world applications are examples
of missing requirements for existing benchmarks. Recent work [38]
aims to fill these gaps, but challenges related to dynamic workloads,
observability, and recovery remain open.

6 Biographies
Rodrigo is a PhD Fellow at the University of Copenhagen. His
research lies on devising effective programming abstractions and
efficient systems for emerging data-intensive applications. During
his doctoral studies, he published relevant articles about distributed
data-intensive applications.
George is a Postdoctoral Researcher at TU Delft. His research
centers around indexing, as well as scalable and efficient data man-
agement with a particular emphasis on stream processing, and
distributed systems.
Kyriakos is a PhD candidate at TU Delft building systems for scal-
able cloud applications. This includes Styx, a deterministic transac-
tional dataflow system that offers a Stateful-FaaS API for creating
scalable cloud applications.
Asterios is an Asst. Professor at TU Delft, working on scalable
data management, focusing on cloud application runtimes, stream
processing, and data integration. Asterios is one of the receivers of
the ACM SIGMOD Systems award in 2023.
Yongluan is a Professor at the University of Copenhagen. His
research interests span database and distributed systems, with his
recent focus on scalable event-driven systems. He has authored
over 80 peer-reviewed research articles in international journals
and conference proceedings.

Acknowledgments
This work was partially supported by Independent Research Fund
Denmark under Grant 9041-00368B, as well as the Vidi research
program project number 19708, financed by the Dutch Research
Council (NWO).

834



Transactional Cloud Applications: StatusQuo, Challenges, and Opportunities SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

References
[1] [n. d.]. Akka. https://akka.io/ (Accessed on 16/12/2024).
[2] [n. d.]. Dapr - Distributed Application Runtime. https://dapr.io/ (Accessed on

27/11/2024).
[3] [n. d.]. Java Spring. https://spring.io/ (Accessed on 16/12/2024).
[4] [n. d.]. Python Flask. https://flask.palletsprojects.com/en/stable/ (Accessed on

16/12/2024).
[5] [n. d.]. RabbitMQ. https://www.rabbitmq.com/ (Accessed on 16/12/2024).
[6] [n. d.]. RedPanda. https://www.redpanda.com/ (Accessed on 16/12/2024).
[7] David Liu , Amit Levy, Shadi Noghabi, and Sebastian Burckhardt. 2023. Doing

More with Less: Orchestrating Serverless Applications without an Orchestrator.
In NSDI. https://www.microsoft.com/en-us/research/publication/doing-more-
with-less-orchestrating-serverless-applications-without-an-orchestrator/

[8] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press. https://doi.org/10.7551/mitpress/1086.001.0001

[9] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-
stein, and Russell Sears. 2010. Boom analytics: exploring data-centric, declarative
programming for the cloud. In Proceedings of the 5th European Conference on Com-
puter Systems (Paris, France) (EuroSys ’10). Association for Computing Machinery,
New York, NY, USA, 223–236. https://doi.org/10.1145/1755913.1755937

[10] AWS. [n. d.]. Lambda. https://aws.amazon.com/lambda/ (Accessed on
27/11/2024).

[11] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. 1992. Orca: A
language for parallel programming of distributed systems. IEEE transactions on
software engineering 18, March (1992), 190–205.

[12] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. 1989. Programming
languages for distributed computing systems. ACM Comput. Surv. 21, 3 (Sept.
1989), 261–322. https://doi.org/10.1145/72551.72552

[13] Philip A. Bernstein. 2019. Resurrecting Middle-Tier Distributed Transactions.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
42, 2 (June 2019), 3–6.

[14] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. 2022. Netherite: efficient execution of serverless workflows. Proc. VLDB
Endow. 15, 8 (April 2022), 1591–1604. https://doi.org/10.14778/3529337.3529344

[15] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S. Meiklejohn. 2021. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang. 5, OOPSLA, Article 133 (Oct.
2021), 27 pages. https://doi.org/10.1145/3485510

[16] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen
Thelin. 2011. Orleans: cloud computing for everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing. ACM, 1–14. https://doi.org/10.1145/
2038916.2038932

[17] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015), 28–38.

[18] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Trans. Comput. Syst. 3, 1 (1985), 63–75.

[19] Chaoyi Cheng, Mingzhe Han, Nuo Xu, Spyros Blanas, Michael D Bond, and Yang
Wang. 2023. Developer’s Responsibility or Database’s Responsibility? Rethinking
Concurrency Control in Databases. In 13th Annual Conference on Innovative Data
Systems Research (CIDR’23). January 8-11, 2023, Amsterdam, The Netherlands.

[20] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae Milano. 2021.
New Directions in Cloud Programming. In 11th Conference on Innovative Data
Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf

[21] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2021. Distributed transactions on serverless stateful functions. In Proceedings of
the 15th ACM International Conference on Distributed and Event-based Systems.
31–42.

[22] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2022. Transactions across serverless functions leveraging stateful dataflows.
Information Systems 108 (2022), 102015. https://doi.org/10.1016/j.is.2022.102015

[23] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-value Store Serving Large-scale
Applications. ACM Trans. Storage 17, 4, Article 26 (Oct. 2021), 32 pages. https:
//doi.org/10.1145/3483840

[24] João Esteves, Rosa Costa, Yongluan Zhou, and Ana Almeida. 2023. An exploratory
analysis of methods for real-time data deduplication in streaming processes. In
Proceedings of the 17th ACM International Conference on Distributed and Event-
Based Systems (Neuchatel, Switzerland) (DEBS ’23). Association for Computing
Machinery, New York, NY, USA, 91–102. https://doi.org/10.1145/3583678.3596898

[25] Azure Service Fabric. [n. d.]. Service Fabric programming model overview.
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-
framework

[26] João Ferreira Loff, Daniel Porto, João Garcia, Jonathan Mace, and Rodrigo Ro-
drigues. 2023. Antipode: Enforcing Cross-Service Causal Consistency in Dis-
tributed Applications. In Proceedings of the 29th Symposium on Operating Systems
Principles (Koblenz, Germany) (SOSP ’23). Association for Computing Machinery,
New York, NY, USA, 298–313. https://doi.org/10.1145/3600006.3613176

[27] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[28] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’87). Association for Computing Machinery, New York,
NY, USA, 249–259. https://doi.org/10.1145/38713.38742

[29] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B Kahveci,
Ali Gürbüz Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman,
Ufuk Yılmaz, et al. 2021. Hazelcast Jet: Low-latency stream processing at the
99.99 th percentile. arXiv preprint arXiv:2103.10169 (2021).

[30] Network Working Group. 2020. The Idempotency HTTP Header Field. https:
//datatracker.ietf.org/doc/html/draft-idempotency-header-00

[31] Christopher Gustafson. 2022. Improving Availability of Stateful Serverless Func-
tions in Apache Flink. Master thesis. KTH Royal Institute of Technology.

[32] Pat Helland. 2007. Life beyond Distributed Transactions: an Apostate’s Opinion.
In Third Biennial Conference on Innovative Data Systems Research, CIDR 2007,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org, 132–
141. http://cidrdb.org/cidr2007/papers/cidr07p15.pdf

[33] Pat Helland. 2017. Life beyond distributed transactions. Commun. ACM 60, 2
(Jan. 2017), 46–54. https://doi.org/10.1145/3009826

[34] Kasun Indrasiri and Danesh Kuruppu. 2020. gRPC: up and running: building cloud
native applications with Go and Java for Docker and Kubernetes. O’Reilly Media.

[35] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Comput-
ing Machinery, New York, NY, USA, 691–707. https://doi.org/10.1145/3477132.
3483541

[36] Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei
Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions across Diverse Data
Stores. Proc. VLDB Endow. 16, 11 (July 2023), 2742–2754. https://doi.org/10.
14778/3611479.3611484

[37] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. Athens, Greece,
1–7.

[38] Rodrigo Laigner, Zhexiang Zhang, Yijian Liu, Leonardo Freitas Gomes, and
Yongluan Zhou. 2025. Online Marketplace: A Benchmark for Data Management
in Microservices. Proc. ACM Manag. Data 3, 1, Article 3 (Feb. 2025), 26 pages.
https://doi.org/10.1145/3709653

[39] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data Management in Microservices: State of the
Practice, Challenges, and Research Directions. Proc. VLDB Endow. 14, 13 (sep
2021), 3348–3361. https://doi.org/10.14778/3484224.3484232

[40] Anna Lesniak, Rodrigo Laigner, and Yongluan Zhou. 2021. Enforcing consistency
in microservice architectures through event-based constraints. In Proceedings of
the 15th ACM International Conference on Distributed and Event-Based Systems
(Virtual Event, Italy) (DEBS ’21). Association for Computing Machinery, New
York, NY, USA, 180–183. https://doi.org/10.1145/3465480.3467839

[41] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bingsheng He, and Minyi
Guo. 2022. The Serverless Computing Survey: A Technical Primer for Design
Architecture. ACM Comput. Surv. 54, 10s, Article 220 (Sept. 2022), 34 pages.
https://doi.org/10.1145/3508360

[42] Yijian Liu, Rodrigo Laigner, and Yongluan Zhou. 2024. Rethinking State Man-
agement in Actor Systems for Cloud-Native Applications. In Proceedings of
the 2024 ACM Symposium on Cloud Computing (Redmond, WA, USA) (SoCC
’24). Association for Computing Machinery, New York, NY, USA, 898–914.
https://doi.org/10.1145/3698038.3698540

[43] Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, and Marcos Antonio Vaz Salles.
2022. Hybrid Deterministic and Nondeterministic Execution of Transactions in
Actor Systems. In Proceedings of the 2022 International Conference on Manage-
ment of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing
Machinery, New York, NY, USA, 65–78. https://doi.org/10.1145/3514221.3526172

[44] Yuan Mei. 2024. Enabling Flink’s Cloud-Native Future: Introducing Disaggregated
State in Flink 2.0. https://current.confluent.io/2024-sessions/enabling-flinks-
cloud-native-future-introducing-disaggregated-state-in-flink-2-0

[45] Orleans. [n. d.]. Best Practices. Retrieved October, 15 2024 from https://dotnet.
github.io/orleans/docs/resources/best_practices.html

[46] Orleans. 2021. Orleans Transactions. https://dotnet.github.io/orleans/docs/grains/
transactions.html.

[47] Christos H Papadimitriou. 1979. The serializability of concurrent database up-
dates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.

835

https://akka.io/
https://dapr.io/
https://spring.io/
https://flask.palletsprojects.com/en/stable/
https://www.rabbitmq.com/
https://www.redpanda.com/
https://www.microsoft.com/en-us/research/publication/doing-more-with-less-orchestrating-serverless-applications-without-an-orchestrator/
https://www.microsoft.com/en-us/research/publication/doing-more-with-less-orchestrating-serverless-applications-without-an-orchestrator/
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.1145/1755913.1755937
https://aws.amazon.com/lambda/
https://doi.org/10.1145/72551.72552
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2038916.2038932
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1016/j.is.2022.102015
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3583678.3596898
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://doi.org/10.1145/3600006.3613176
https://doi.org/10.1145/38713.38742
https://datatracker.ietf.org/doc/html/draft-idempotency-header-00
https://datatracker.ietf.org/doc/html/draft-idempotency-header-00
http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
https://doi.org/10.1145/3009826
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.14778/3611479.3611484
https://doi.org/10.14778/3611479.3611484
https://doi.org/10.1145/3709653
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.1145/3465480.3467839
https://doi.org/10.1145/3508360
https://doi.org/10.1145/3698038.3698540
https://doi.org/10.1145/3514221.3526172
https://current.confluent.io/2024-sessions/enabling-flinks-cloud-native-future-introducing-disaggregated-state-in-flink-2-0
https://current.confluent.io/2024-sessions/enabling-flinks-cloud-native-future-introducing-disaggregated-state-in-flink-2-0
https://dotnet.github.io/orleans/docs/resources/best_practices.html
https://dotnet.github.io/orleans/docs/resources/best_practices.html
https://dotnet.github.io/orleans/docs/grains/transactions.html
https://dotnet.github.io/orleans/docs/grains/transactions.html


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Rodrigo Laigner, George Christodoulou, Kyriakos Psarakis, Asterios Katsifodimos, & Yongluan Zhou

[48] Esmond Pitt and Kathy McNiff. 2001. Java.rmi: The Remote Method Invocation
Guide. Addison-Wesley Longman Publishing Co., Inc., USA.

[49] Google Cloud Platform. [n. d.]. Online Boutique. https://github.com/
GoogleCloudPlatform/microservices-demo

[50] Dan Pritchett. 2008. Base: An Acid Alternative. In File Systems and Storage, Vol. 6.
ACM Queue. Issue 3.

[51] Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, and Asterios Kat-
sifodimos. 2025. Transactional Cloud Applications Go with the (Data)Flow. In
15th Annual Conference on Innovative Data Systems Research (CIDR’25). January
19-22, 2025, Amsterdam, The Netherlands.

[52] Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis,
and Asterios Katsifodimos. 2025. Styx: Transactional Stateful Functions on
Streaming Dataflows. Proc. ACM Manag. Data, Article 226 (2025). https://doi.
org/10.1145/3725363

[53] Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi, and
Asterios Katsifodimos. 2023. Stateful entities: object-oriented cloud applications
as distributed dataflows. Proceedings of the 27th International Conference on
Extending Database Technology (EDBT) (2023), 15––21.

[54] M. Ramachandran and Z. Mahmood. 2020. Software Engineering in the Era of
Cloud Computing. Springer International Publishing. https://books.google.dk/
books?id=v5PHDwAAQBAJ

[55] RisingWave. [n. d.]. RisingWave vs Apache Flink. https://risingwave.com/
risingwave-vs-apache-flink

[56] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006. Closed ver-
sus open system models and their impact on performance and scheduling. In
Symposium on Networked Systems Design and Implementation (NSDI).

[57] CAE Specification. 1991. Distributed Transaction Processing: the XA Specification.
X/Open.

[58] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
stateful functions-as-a-service. Proc. VLDB Endow. 13, 12 (July 2020), 2438–2452.
https://doi.org/10.14778/3407790.3407836

[59] Apache Flink Statefun. 2023. Stateful Functions: A Platform-Independent Stateful
Serverless Stack. Retrieved November 11, 2023 from https://nightlies.apache.org/
flink/flink-statefun-docs-master/

[60] Andrew S. Tanenbaum and Maarten van Steen. 2008. Distributed Systems: Princi-
ples and Paradigms (2nd rev. ed. ed.). Prentice Hall International.

[61] Dmitrii Ustiugov, Plamen Petrov,Marios Kogias, Edouard Bugnion, and Boris Grot.
2021. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21).
Association for Computing Machinery, New York, NY, USA, 559–572. https:
//doi.org/10.1145/3445814.3446714

[62] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041–1052. https://doi.org/10.1145/3035918.3056101

[63] Steve Vinoski. 1997. CORBA: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communications magazine 35, 2 (1997), 46–55.

[64] Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In
Companion of the 2023 International Conference on Management of Data (Seattle,
WA, USA) (SIGMOD ’23). Association for Computing Machinery, New York, NY,
USA, 37–44. https://doi.org/10.1145/3555041.3589403

[65] Fan Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke. 2006. Hilda: A
High-Level Language for Data-DrivenWeb Applications. In 22nd International
Conference on Data Engineering (ICDE’06). 32–32. https://doi.org/10.1109/ICDE.
2006.75

[66] Stephen Yau and Ho An. 2011. Software engineering meets services and cloud
computing. Computer 44, 10 (2011), 47–53.

[67] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: a system for general-
purpose distributed data-parallel computing using a high-level language. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation (San Diego, California) (OSDI’08). USENIX Association, USA, 1–14.

[68] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013. 423–438.

[69] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 1187–1204. https://www.usenix.org/conference/osdi20/
presentation/zhang-haoran

[70] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2023. Efficiently
Making Cross-Engine Transactions Consistent. SIGMOD Rec. 52, 1 (June 2023),
27–34. https://doi.org/10.1145/3604437.3604444

[71] Shuhao Zhang, Juan Soto, and Volker Markl. 2024. A survey on transactional
stream processing. The VLDB Journal 33, 2 (2024), 451–479.

[72] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking microservice systems for software engineering research. In
Proceedings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM,
323–324. https://doi.org/10.1145/3183440.3194991

836

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://doi.org/10.1145/3725363
https://doi.org/10.1145/3725363
https://books.google.dk/books?id=v5PHDwAAQBAJ
https://books.google.dk/books?id=v5PHDwAAQBAJ
https://risingwave.com/risingwave-vs-apache-flink
https://risingwave.com/risingwave-vs-apache-flink
https://doi.org/10.14778/3407790.3407836
https://nightlies.apache.org/flink/flink-statefun-docs-master/
https://nightlies.apache.org/flink/flink-statefun-docs-master/
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3555041.3589403
https://doi.org/10.1109/ICDE.2006.75
https://doi.org/10.1109/ICDE.2006.75
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1145/3604437.3604444
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 Tutorial Overview
	3 Building Blocks
	3.1 Programming Cloud Applications
	3.2 Messaging
	3.3 State Management
	3.4 Discussion

	4 Requirements
	4.1 Fault-tolerance
	4.2 Consistency
	4.3 Application Lifecycle Management

	5 Open Problems & Research Opportunities
	5.1 Programming Models & Systems
	5.2 State & Messaging
	5.3 Workloads & Benchmarks

	6 Biographies
	Acknowledgments
	References



