
Styx: Transactional Stateful Functions on Streaming
Dataflows
KYRIAKOS PSARAKIS, Delft University of Technology, The Netherlands

GEORGE CHRISTODOULOU, Delft University of Technology, The Netherlands

GEORGE SIACHAMIS∗, Inria & Institut Polytechnique de Paris, France

MARIOS FRAGKOULIS, Delft University of Technology, The Netherlands

ASTERIOS KATSIFODIMOS, Delft University of Technology, The Netherlands

Developing stateful cloud applications, such as low-latencyworkflows andmicroservices with strict consistency

requirements, remains arduous for programmers. The Stateful Functions-as-a-Service (SFaaS) paradigm aims

to serve these use cases. However, existing approaches provide weak transactional guarantees or perform

expensive external state accesses requiring inefficient transactional protocols that increase execution latency.

In this paper, we present Styx, a novel dataflow-based SFaaS runtime that executes serializable transactions

consisting of stateful functions that form arbitrary call-graphs with exactly-once guarantees. Styx extends

a deterministic transactional protocol by contributing: i) a function acknowledgment scheme to determine

transaction boundaries required in SFaaS workloads, ii) a function-execution caching mechanism, and iii) an

early commit-reply mechanism that substantially reduces transaction execution latency. Experiments with

the YCSB, TPC-C, and Deathstar benchmarks show that Styx outperforms state-of-the-art approaches by

achieving at least one order of magnitude higher throughput while exhibiting near-linear scalability and low

latency.

CCS Concepts: • Computer systems organization→ Cloud computing; • Information systems→ Data
management systems.

Additional Key Words and Phrases: Streaming Dataflows; Serializable Deterministic Transactions; Stateful

Functions

ACM Reference Format:
Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, and Asterios Katsifodimos.

2025. Styx: Transactional Stateful Functions on Streaming Dataflows. Proc. ACM Manag. Data 3, 3 (SIGMOD),

Article 226 (June 2025), 28 pages. https://doi.org/10.1145/3725363

1 Introduction
Despite the commercial offerings of the Functions-as-a-Service (FaaS) cloud service model, its

suitability for low-latency stateful applications with strict consistency requirements, such as

payment processing, reservation systems, inventory keeping, and low-latency business workflows,

is quite limited. The reason behind this unsuitability is that current FaaS solutions are stateless,

∗
Work done while at Delft University of Technology

Authors’ Contact Information: Kyriakos Psarakis, Delft University of Technology, Delft, The Netherlands, k.psarakis@

tudelft.nl; George Christodoulou, Delft University of Technology, Delft, The Netherlands, g.c.christodoulou@tudelft.nl;

George Siachamis, Inria & Institut Polytechnique de Paris, Paris, France, georgios.siachamis@inria.fr; Marios Fragkoulis,

Delft University of Technology, Delft, The Netherlands, m.fragkoulis@tudelft.nl; Asterios Katsifodimos, Delft University of

Technology, Delft, The Netherlands, a.katsifodimos@tudelft.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/6-ART226

https://doi.org/10.1145/3725363

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-3017-5704
HTTPS://ORCID.ORG/0000-0002-2104-565X
HTTPS://ORCID.ORG/0000-0002-4618-2028
HTTPS://ORCID.ORG/0000-0002-0160-0855
HTTPS://ORCID.ORG/0000-0002-6717-2945
https://doi.org/10.1145/3725363
https://orcid.org/0000-0002-3017-5704
https://orcid.org/0000-0002-2104-565X
https://orcid.org/0000-0002-4618-2028
https://orcid.org/0000-0002-0160-0855
https://orcid.org/0000-0002-6717-2945
https://doi.org/10.1145/3725363

226:2 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Sty
x

T-S
tat

efu
n

Boki Beld
i

102

103

104

105
Latency@2000TPS (ms)

Sty
x

T-S
tat

efu
n

Boki Beld
i

103

104

Throughput (TPS)

Fig. 1. Styx outperforms the SotA by at least one order of magnitude in transactional workloads (§8). The
figure shows median (bar)/99p (whisker) latency and throughput. For the latency plot, the input throughput
is 2000 transactions per second (TPS), and for the throughput plot, we report the throughput that the systems
achieve at subsecond latency.

relying on external, fault-tolerant data stores (blob stores or databases) for state management. In

addition, while multiple frameworks can perform workflow execution (e.g., AWS Step Functions

[2], Azure Logic Apps [44]), they do not provide primitives for transactional execution of such

applications. As a result, distributed applications (e.g., microservice architectures) suffer from

serious consistency issues when the responsibility of transaction execution is left to developers

[10, 34, 59].

In line with recent research [12, 28, 29, 55, 56, 63], we agree that for FaaS offerings to become

mainstream, they should include state management support for stateful functions according to the

Stateful Functions-as-a-Service (SFaaS) paradigm. In addition, we argue that a suitable runtime for

executingworkflows of stateful functions should also provide 𝑖) end-to-end serializable transactional
guarantees across multiple functions, 𝑖𝑖) low-latency and high-throughput execution, and 𝑖𝑖𝑖) a high-
level programming model, devoid of low-level primitives for locking and transaction coordination.

To the best of our knowledge, no existing approach addresses all these requirements together.

The state-of-the-art transactional SFaaS with serializable guarantees, Boki [28], Beldi [63], and

T-Statefun [12] do support transactional end-to-end workflows but induce high commit latency

and low throughput. The main reason behind their inefficiency is the separation of state storage

and function logic, as well as the use of locking and Two-Phase Commit (2PC) [23] to coordinate

and ensure the atomicity of cross-function transactions.

This paper proposes Styx, a novel dataflow-based runtime for SFaaS. Styx ensures that each

transaction’s state mutations will be reflected once in the system’s state, even under failures, retries,

or other potential disruptions (known as exactly-once processing). Additionally, Styx can execute

arbitrary function orchestrations with end-to-end serializability guarantees, leveraging concepts

from deterministic databases to avoid costly 2PCs.

Our work stems from two important observations. First, modern streaming dataflow systems such

as Apache Flink [8] guarantee exactly-once processing [7, 8, 53] by transparently handling failures.

A limitation of those streaming systems is that they cannot execute general cloud applications

such as microservices or guarantee transactional SFaaS orchestrations. Second, deterministic

database protocols [42, 61] that can avoid expensive 2PC invocations have not been designed for

complex function orchestrations and arbitrary call-graphs. For the needs of transactional SFaaS,

Styx leverages a deterministic transactional protocol, enabling early commit-replies to clients (i.e.,

before a snapshot is committed to persistent storage).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:3

Our work is in line with recent proposals in the area, such as DBOS [54], Hydro [11], and

SSMSs [39]. Unlike these systems, our work adopts the streaming dataflow execution model and

guarantees serializability across functions. As shown in Figure 1, Styx achieves one order of magni-

tude lower median latency, two orders of magnitude lower 99p latency at 2000 transactions/sec,

and one order of magnitude higher throughput compared to state of the art (SotA) serializable

SFaaS systems [12, 28, 63].

In short, this paper makes the following contributions:

– Styx combines deterministic transactions with dataflows and overcomes the challenges that arise

from this design choice (§2).

– Styx enables high-level SFaaS programming models that abstract away transaction and failure

management code (§3). Styx does so, by guaranteeing exactly-once processing (§4) and transactional

serializability across arbitrary function calls (§5 and §6).

– Styx extends the concept of deterministic databases to support arbitrary workflows of stateful func-

tions, contributing a novel acknowledgment scheme (§5.3) to track function completion efficiently,

as well as a function-execution caching mechanism (§6.3) to speed up function re-executions.

– Styx’s deterministic execution enables early commit-replies: transactions can be reported as

committed even before a snapshot of executed transactions is committed to durable storage (§6.4).

– Styx outperforms the state-of-the-art [12, 28, 63] by at least one order of magnitude higher

throughput in all tested workloads while achieving lower latency and near-linear scalability (§8).

Styx is available at: https://github.com/delftdata/styx

2 Motivation
In this section, we analyze the specifics of streaming dataflow systems design and argue that they

can be extended to encapsulate the primitives required for consistently and efficiently executing

workflows of stateful functions. Our work is based on a key observation: the architecture of

high-performance cloud services closely resembles a parallel dataflow graph, where the state is

partitioned and co-located with the application logic [49]. Additionally, as we detail in §2.2, there

is a synergy between deterministic transactions and dataflow systems. Such a combination can

offer state consistency and ease of programming as monolithic solutions did in the past, while

improving scalability and eliminating developer involvement. Finally, we show how deterministic

transactions can be extended for SFaaS, where transaction boundaries are unknown, unlike online

transaction processing (OLTP).

2.1 Dataflows for Stateful Functions
Stateful dataflows is the execution model implemented by virtually all modern stream processors

[8, 46, 48]. Besides being a great fit for parallel, data-intensive computations, stateful dataflows

are the primary abstraction supporting workflow managers such as Apache Airflow [18], AWS

Step Functions [2], and Azure’s Durable Functions [6]. In the following, we present the primary

motivation behind using stateful dataflows to build a suitable runtime for orchestrating general-

purpose cloud applications.

Exactly-once Processing.Message-delivery guarantees are fundamentally hard to deal with in

the general case, with the root of the problem being the well-known Byzantine Generals problem

[35]. However, in the closed world of dataflow systems, exactly-once processing is possible [7, 8, 53].

As a matter of fact, the APIs of popular streaming dataflow systems, such as Apache Flink, require

no error management code (e.g., message retries or duplicate elimination with idempotency IDs).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

https://github.com/delftdata/styx

226:4 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Co-Location of State and Function. The primary reason streaming dataflow systems can sustain

millions of events per second [8, 21] is that their state is partitioned across operators that operate

on local state. While the structure of current Cloud offerings favors the disaggregation of storage

and computation, we argue that co-locating state and computation enables high performance and

can also be adopted by modern SFaaS runtimes, as opposed to using external databases for state

storage.

Coarse-Grained Fault Tolerance. To ensure atomicity at the level of workflow execution, existing

SFaaS systems perform fine-grained fault tolerance [28, 63]; each function execution is logged and

persisted in a shared log before the next function is called. This requires a round-trip to the logging

mechanism for each function call, which adds significant latency to function execution. Instead of

logging each function execution, streaming dataflow systems [7, 9, 52] opt for a coarse-grained

fault tolerance mechanism based on asynchronous snapshots, reducing this overhead.

2.2 Determinism & Transactions
Given a set of database partitions and a set of transactions, a deterministic database [1, 61] will end

up in the same final state despite node failures and possible concurrency issues. Traditional database

systems offer serializable guarantees, allowing multiple transactions to execute concurrently and

ensure that the database state will be equivalent to the state of one serial transaction execution.

Deterministic databases guarantee not only serializability but also that a given set of transactions

will have exactly the same effect on the database state despite transaction re-execution. This

guarantee has important implications [1] that have not been leveraged by SFaaS systems thus far.

Deterministic Transactions on Streaming Dataflows. Unlike 2PC, which requires rollbacks in

case of failures, deterministic database protocols [42, 61] are "forward-only": once the locking order

[61] or read/write set [42] of a batch of transactions has been determined, the transactions are

going to be executed and reflected on the database state, without the need to rollback changes. This

notion is in line with how dataflow systems operate: events flow through the dataflow graph, from

sources to sinks, without stalls for coordination. This match between deterministic databases and

the dataflow execution model is the primary motivation behind Styx’s design choice to implement

a deterministic transaction protocol on top of a dataflow system.

2.3 Challenges
Despite their success and widespread applicability, dataflow systems need to undergo multiple

changes before they can be used for transactional stateful functions. In the following, we list

challenges and open problems tackled in this work.

Programming Models. Dataflow systems at the moment are only programmable through func-

tional programming-style dataflow APIs: a given cloud application has to be rewritten by pro-

grammers to match the event-driven dataflow paradigm. Although it is possible to rewrite many

applications in this paradigm, it takes a considerable amount of programmer training and effort.

We argue that dataflow systems would benefit from object-oriented or actor-like programming

abstractions in order to be adopted for general cloud applications, such as microservices.

Support for Transactions. Transactions in the context of streaming dataflow systems typically

refer to processing a set of input elements and their state updates with ACID guarantees [64].

Despite progress, critical challenges remain open, such as the performance overhead incurred by

multi-partition transactions, as well as the need to block flows of data for locking and message

re-ordering. In this work, we argue that in order to implement transactions in a streaming dataflow

system, we need to "keep the data moving" [57] by avoiding disruptions in the natural flow of

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:5

data while tightly integrating transaction processing into the system’s state management and fault

tolerance protocols.

Deterministic OLTP and SFaaS. OLTP databases that use deterministic protocols like Calvin [42,

61, 66] either require each transaction’s read/write set a priori or are extended to discover the

read-write sets of a transaction by first executing it. Additionally, in both scenarios, deterministic

protocols assume that a transaction is executed as a single-threaded function that can perform

remote reads and writes from other partitions. In the case of SFaaS, arbitrary function calls enable

programmers to take advantage of both the separation of concerns principle, which is widely

applied in microservice architectures [34], as well as code modularity. Although deterministic

database systems have been proven to perform exceptionally well [1], designing and implementing

a deterministic transactional protocol for arbitrary workflows of stateful functions is non-trivial.

Specifically, arbitrary function calls create complex call-graphs that need to be tracked in order to

establish a transaction’s boundaries before committing.

Dataflows for Arbitrary-Workflow Execution. The prime use case for dataflow systems nowa-

days is streaming analytics. However, general-purpose cloud applications have different workload

requirements. Functions calling other functions and receiving responses introduce cycles in the

dataflow graph. Such cycles can cause deadlocks and need to be dealt with [36].

In this work, we tackle these challenges and propose a dataflow system tailored to the needs of

stateful functions with built-in support for deterministic transactions and a high-level programming

model.

3 Programming Model
The programming model of Styx is based on Python and comprises operators that encapsulate

partitioned mutable state and functions that operate on that. An example of the programming

model of Styx is depicted in Figure 2.

3.1 Programming Model Notions

Stateful Entities. Similar to objects in object-oriented programming, entities in Styx are re-

sponsible for maintaining and mutating their own state. Moreover, when a given entity needs to

update the state of another entity, it can do so via a function call. Each entity bears a unique and

immutable key, similar to Actor references in Akka [40], with the difference that entity keys are

application-dependent and contain no information related to their physical location. The dataflow

runtime engine (§4) uses that key to route function calls to the right operator that accommodates

that specific entity.

Functions. functions can mutate the state of an entity. By convention, the context is the first
parameter of each function call. Functions are allowed to call other functions directly, and Styx

supports both synchronous and asynchronous function calls. For instance, in lines 9-11 of Figure 2,

the instantiated reservation entity will call asynchronously the function ’reserve_hotel’ of an
entity with key ’hotel_id’ attached to the Hotel operator. Similarly, one can make a synchronous

call that blocks waiting for results. In this case, Styx will block execution until the call returns.

Depending on the use case, a mix of synchronous and asynchronous calls can be used. Asynchronous

function calls, however, allow for further optimizations that Styx applies whenever possible, as we

describe in §5 and §6.

Operators. Each entity directly maps to a dataflow operator (a vertex) in the dataflow graph.

When an event enters the dataflow graph, it reaches the operator holding the function code of the
given entity as well as the state of that entity. In short, a dataflow operator can execute all functions

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:6 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

1 from styx import Operator
2 from deathstar.operators import Hotel, Flight
3

4 reservation_operator = Operator('reservation', n_partitions=4)
5

6 @reservation_operator.register
7 async def make_reservation(context, flight_id, htl_id, usr_id):
8

9 context.call_async(operator=Hotel,
10 function_name='reserve_hotel',
11 key=htl_id)
12 context.call_async(operator=Flight,
13 function_name='reserve_flight',
14 key=flight_id)
15

16 reservation = {"fid":flight_id, "hid":htl_id, "uid":usr_id}
17 await context.state.put(reservation)
18

19 return "Reservation Successful"

Fig. 2. Deathstar’s[20] Hotel/Flight reservation in Styx. From lines 9-14, the 𝑟𝑒𝑠𝑒𝑟𝑣𝑒_ℎ𝑜𝑡𝑒𝑙 and 𝑟𝑒𝑠𝑒𝑟𝑣𝑒_𝑓 𝑙𝑖𝑔ℎ𝑡
functions are invoked asynchronously. Finally, in lines 16-17, the reservation information is stored. In Styx,
the transactional and fault tolerance logic are handled internally.

of a given entity and store the state of that entity. Since operators can be partitioned across multiple

cluster nodes, each partition stores a set of stateful entities indexed by their unique key. When an

entity’s function is invoked (via an incoming event), the entity’s state is retrieved from the local

operator state. Then, the function is executed using the arguments found in the incoming event

that triggered the call.

State & Namespacing. As mentioned before, each entity has access only to its own state. In Styx,

the state is namespaced with respect to the entity it belongs to. For instance, a given key "hotel53"
within the operator Hotel is represented as: entities://Hotel/hotel53. This way, a reference
to a given key of a state object is unique and can be determined at runtime when operators are

partitioned across workers. Programmers can store or retrieve state through the context object

by invoking context.put() or get() (e.g., in Line 17 of Figure 2). Styx’s context is similar to the

context object used in other systems, such as Flink Statefun, AWS Lambda, and Azure Durable

Functions.

Transactions. A transaction in Styx begins with a client request. The functions that are part of

the transaction form a workflow that executes with serializable guarantees. Styx’s programming

model allows transaction aborts by raising an uncaught exception. In the example of Figure 2,

if a hotel entity does not have enough availability when calling the ’reserve_hotel’ function, the
’make_reservation’ transaction should be aborted, alongside potential state mutations that the

’reserve_flight’ has made to a flight entity. In that case, the programmer has to raise an exception as

follows:

1 ...
2 # Check if there are enough rooms available in the hotel
3 if available_rooms <= 0:
4 raise NotEnoughSpace(f'No rooms in hotel: {context.key}')
5 ...

The exception is caught by Styx, which automatically triggers the abort/rollback sequence of the

transaction where the exception occurred and sends the user-defined exception message as a reply.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:7

reserve_hotel(h1)

make_reservation(h1, f1, u1)

 :{h1, .., hn}

Write h1

Workerm

1

make_reservation(Hotel h1, Flight f1, User u1)

2

Sequencer

Function Executor

Read h1

Partitioner

Worker2Worker1

reserve_flight(f1)

Call async

…

…

1

2

m

Input Queue

Sequencer

Function
Executor

P

Sequencer

Function
Executor

P

Snapshot Store

Output Queue

Fig. 3. Stateful-Function execution in Styx. In each worker, one coroutine manages the sequencing of
incoming transactions while another coroutine handles their processing. In this example, transaction
(make_reservation) consists of two functions: reserve_hotel and reserve_flight. A function can ac-
cess local state (reserve_hotel) but also perform remote calls to different partitions (reserve_flight). This
remote call uses the partitioner to locate the correct worker storing that partition.

Exactly-once Function Calling. Styx offers exactly-once processing guarantees: it reflects the

state changes of a function call execution exactly-once. Thus, programmers do not need to “pollute”

their application logic with consistency checks, state rollbacks, timeouts, retries, and idempotency

[32, 34]. We detail this capability in §7.

4 Styx’s Architecture
In this section, we describe the components (Figure 3) and the main design decisions of Styx.

4.1 Components

Coordinator. The coordinator manages and monitors Styx’s workers, as well as the runtime state

of the cluster (transactional metadata, dataflow state, partition locations, etc.). It also performs

scheduling and health monitoring. Styx monitors the cluster’s health using a heartbeat mechanism

and initiates the fault-tolerance mechanism (§7) once a worker fails.

Worker. As depicted in Figure 3, the worker is the primary component of Styx, processing transac-

tions, receiving or sending remote function calls, and managing state.

The worker consists of two primary coroutines. The first coroutine ingests messages for its

assigned partitions from a durable queue and sequences them. The second coroutine receives a

set of sequenced transactions and initiates the transaction processing. By utilizing the coroutine

execution model, Styx increases its efficiency since the most significant latency factor is waiting for

network or state-access calls. Coroutines allow for single-threaded concurrent execution, switching

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:8 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

R1(k1, k2) T1 W1

[C3]={T3}

[R/W]1={k1:Τ1}

[R/W]2={k2:Τ1,Τ2, k8:Τ2,Τ3}

 :{k1, k4, k7}

W2 :{k2, k5, k8}

W3 :{k3, k6, k9}T3

T2

1 2 3 4

[C2]={T2, T3}

[C1]={Ø}[C1]={T1}

[C3]={Ø}

[C2]={T1}

Call-Graph Discovery Lock-free commit Lock-based commitSequencing

R2(k3, k8)

R3(k2, k8)

[R/W]3={k3:Τ3}

T3T2T1

Fig. 4. The transaction execution pipeline in Styx is divided into 4 parts. First, each external request (𝑅𝑖) is
sequenced as a transaction and is assigned a unique id. Afterward, the transactions execute their application
logic, accessing local keys and performing remote function calls. While a transaction executes, Styx tracks
its accessed keys ([𝑅/𝑊]𝑖) and incrementally constructs its call-graph. Subsequently, Styx commits the
transactions that do not participate in unresolved conflicts without having to perform locking. For example,
we observe that workers𝑊1 and𝑊2 are capable to commit 𝐶1 = 𝐶2 =

{
𝑇1
}
while 𝑇1 interacts with the same

keys as 𝑇2; although it has the lowest id. In the final part, we commit all the transactions by resolving the
conflicts with a lock-based mechanism (𝐶2 =

{
𝑇2,𝑇3

}
), 𝐶3 =

{
𝑇3
}
).

between coroutines when one gets suspended during a network call, allowing others to make

progress. Once the network call is completed, the suspended coroutine resumes processing.

Partitioning Stateful Entities Across Workers. Styx makes use of the entities’ key to distribute

those entities and their state across a number of workers. By default, each worker is assigned a set

of keys using hash partitioning.

Input/Output Queue. For fault tolerance, Styx assumes a persistent input queue from which it

receives requests from external systems (e.g., from a REST gateway API). Styx requires the input

queue to be able to deterministically replay messages based on an offset when a failure occurs. As

we detail in §7, the replayable input queue is necessary for Styx to produce the same sequence of

transactions after the recovery is complete and to enable early commit-replies (§6.4). In the same

way, Styx sends the result of a given transaction to an output queue from which an external system

(e.g., the same REST gateway API) can receive it. Currently, Styx leverages Apache Kafka [33].

Durable Snapshot Store. Alongside the replayable queue, durable storage is necessary for storing

the workers’ snapshots. Currently, Styx uses Minio [45], an open-source blob store that follows the

AWS S3 API, to store the incremental snapshots as binary data files.

4.2 Transaction Execution Pipeline
Styx employs an epoch-based transactional protocol that concurrently executes a batch of transac-

tions in each epoch. A transaction may include multiple functions that, during runtime, form a

call-graph of function invocations. Each function may mutate its entity’s state, and the effects of

function invocations are committed to the system state in a transactional manner. In Figure 3, once

make_reservation enters the system, it is persisted and replicated by the input queue. Then, a

worker ingests the call into its local sequencer that assigns a Transaction ID (TID) and processes all

the encapsulated function calls as a single transaction. In the make_reservation case, the trans-
action consists of two functions: reserve_hotel and reserve_flight. For this example, let us

assume that reserve_hotel is a local function call and reserve_flight runs on a remote worker.

reserve_hotel will execute locally in an asynchronous fashion using coroutines and apply state

changes. In contrast, reserve_flight will execute asynchronously on a remote worker, applying

changes on the remote state.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:9

S1 S2S3

lc=

sid=1
0 1 ..

k..41 n..63

sid=3
0 1 ..lc= lc=

sid=2
0 1 ..

m..52

R1 R3

R2

1+(0*3)

T1

3+(0*3)

T3
2+(0*3)

T2

n_seq=3

Fig. 5. Example of TID assignment in Styx with three sequencers. Their identifiers {1, 2, 3} lead to the following
sequences: 𝑆1 = {1, 4, ..., 𝑘}, 𝑆2 = {2, 5, ...,𝑚}, 𝑆3 = {3, 6, ..., 𝑛} following the formula expressed in Equation (1).

5 Sequencing & Function Execution
The deterministic execution of functions with serializable guarantees requires a sequencing step

that assigns a transaction ID (TID), which, in combination with the read/write (RW) sets, can

be used for conflict resolution (§6). The challenge we tackle in this section is determining the

boundaries of transactions (i.e., when a transaction’s execution starts and finishes), which emerges

from the execution of arbitrary function call-graphs §5.3.

5.1 Transaction Sequencing
In this section, we discuss the sequencing mechanism (1) of Styx. Deterministic databases ensure

the serializable execution of transactions by forming a global sequence. In Calvin [61], the authors

propose a partitioned sequencer that retrieves the global sequence by communicating across all

partitions, performing a deterministic round-robin.

Eliminating Sequencer Synchronization. Instead of the original sequencer of Calvin that

sends O(𝑛2) messages for the deterministic round-robin, Styx adopts a method similar to the one

followed by Mencius [43], allowing Styx to acquire a global sequence without any communication

between the sequencers (O(1)). This is achieved by having each sequencer assign unique transaction
identifiers (TIDs) as follows:

𝑇 𝐼𝐷𝑠𝑖𝑑,𝑙𝑐 = 𝑠𝑖𝑑 + (𝑙𝑐 ∗ 𝑛_𝑠𝑒𝑞) (1)

where 𝑠𝑖𝑑 ∈ N1 is the sequencer id assigned by the Styx coordinator in the registration phase,

𝑙𝑐 ∈ N0 is a local counter of each sequencer specifying how many TIDs it has assigned thus far and

𝑛_𝑠𝑒𝑞 ∈ N1 is the total number of sequencers in the Styx cluster. In the example of Figure 4, the

sequencers of the three workers will sequence 𝑅1, 𝑅2, and 𝑅3 to 𝑇1, 𝑇3, and 𝑇2 respectively. Figure 5

illustrates how those TIDs are generated in parallel. Note that, conceptually, Styx implements

a partitioned sequencer where the global sequence 𝑆 = {𝑆1 ∪ 𝑆2 ∪ · · · ∪ 𝑆𝑛} is the union of all

partitioned sequences.

Mitigating Sequence Imbalance. In case a single sequencer 𝑆1 receives more traffic than other

sequencers, its local counter (𝑙𝑐1) will increase more than the local counter of the rest of the

sequencers. As a result, in the next epoch, sequencer 𝑆1 would produce larger TIDs than the rest of

the sequencers. This means that new transactions arriving at a less busy sequencer will receive

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:10 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Intermediate call Terminal call Function call Ack. share return

Root function

Function call Function callFunction call

Function call Function call Function call

3/3

1/3

1/61/3

1/3 1/3

1/6

Fig. 6. Asynchronous function call chains. A given root function call may invoke other functions throughout
its execution. The original acknowledgment (3/3) splits into parts as the function execution proceeds, and
each function receives its own ack-share. For instance, in this function execution, the root function calls three
other functions, thus splitting the ack-share into three equal parts. The same applies to subsequent calls,
where the caller functions further split their ack-share. The sum of ack-shares of terminal (dark blue) calls
(i.e., function calls that do not perform further calls) adds to exactly 3/3, which allows the root function to
report the completion of execution.

higher priority for execution: transactions with higher TID receive less priority in our transactional

protocol. In case of high contention in the workload, this would increase latencies for the busy

(𝑆1) worker node. To avoid this, at the end of an epoch, the coordinator calculates the maximum 𝑙𝑐

(𝑚𝑎𝑥 (𝑙𝑐1, 𝑙𝑐2, . . . , 𝑙𝑐𝑛)) and communicates it to all workers so that they can adjust their local counter

re-balancing sequences in every epoch. Balancing the workers’ transaction priorities reduces the

99th percentile latency.

Replication and Logging. There is no need to replicate and log the sequence within Styx since

the input is logged and replicated within the replayable queue. In case of failure, after transaction

replay, the sequencers will produce the exact same sequence (§7.2).

5.2 Call-Graph Discovery
After sequencing, Styx needs to execute the sequenced transactions and determine their call-

graphs and RW sets (2). To this end, the function execution runtime ingests a given sequence of

transactions to process in a given epoch. The number of transactions per epoch is either set by a

polling interval or by a configurable maximum number of transactions that can run per epoch (by

default, 1000 transactions per epoch). We have chosen an epoch-based approach since processing

the incoming transactions in batches increases throughput.

Styx’s runtime executes all the sequenced transactions on a snapshot of the data to discover the

read/write sets. Transactions that span multiple workers will implicitly change the read/write sets

of the remote workers via function calls. There is an additional issue related to discovering the

RW set of a transaction: before the functions execute, the call-graph of the transaction is unknown.

This is an issue because the protocol requires all transactions to be completed before proceeding to

the next phase. To tackle this problem, Styx proposes a function acknowledgment scheme, which

is explained in more detail in §5.3.

After this phase, all the stateful functions that comprise transactions will have finished execution,

and the RW sets will be known. In Figure 4, transactions 𝑇1, 𝑇2, and 𝑇3 will execute and create

the following RW sets: 𝑊𝑜𝑟𝑘𝑒𝑟1 → {𝑘1 : 𝑇1}, 𝑊𝑜𝑟𝑘𝑒𝑟2 → {𝑘2 : 𝑇1,𝑇2 and 𝑘8 : 𝑇2,𝑇3} and
𝑊𝑜𝑟𝑘𝑒𝑟3 → {𝑘3 : 𝑇3}.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:11

5.3 Function Execution Acknowledgment
In the SFaaS paradigm, the call-graph formed by a transaction is unknown; functions could be

coded by different developer teams and can form complex call-graphs. This uncertainty complicates

determining when a transaction has completed processing, which is essential because phase 3 can

only start after all transactions have finished processing. To that end, each asynchronous function

call of a given transaction is assigned an ack_share. A given function knows how many shares to

create by counting the number of asynchronous function calls during its runtime. The caller function

then sends the respective acknowledgment shares to the downstream functions. For instance, in

Figure 6, the transaction entry-point (root of the tree) calls three remote functions, splitting the

ack_share into three parts (3 x 1/3). The left-most function invokes only one other function and

passes to it its complete ack_share (1/3). The middle function does not call any functions, so it

returns the share to the root function when it completes execution, and the right-most function

calls two other functions, splitting its share (1/3) to 2 x 1/6. After all the function calls are complete,

the root function should have collected all the shares. When the sum of the received shares adds to

1, the root/entry-point function can safely deduce that the execution of the entire transaction is

complete.

This design is devised for two reasons: i) if every participating function just sent an ack when

it is done, the root would not know how many acks to expect in order to decide whether the

entire execution has finished, and ii) if we used floats instead of fractions we could stumble upon

a challenge related to adding floating point numbers. For instance, if we consider floating-point

numbers in the example given in Figure 6 that consists of the three function calls, the sum of all

shares would not equal 1, but 0.99 since each share contributes 0.33. Subsequently, we cannot

accurately round inexact division numbers; therefore, Styx uses fraction mathematics instead.

A solution close to the ack_share is the one of distributed futures [62]. However, it would not

work in the SFaaS context as it either requires information about the entire call-graph for it to

work asynchronously. Otherwise, it would need to create a chain of futures that would make it

synchronous, introducing high latency.

6 Committing Transactions
After completing an epoch’s call-graph discovery, Styx needs to determine which transactions

will commit and which will abort based on the transactions’ Read/Write (RW) sets and TIDs. To

this end, this section presents two different commit phases: 𝑖) an optimistic lock-free phase that

commits only the non-conflicting transactions, and 𝑖𝑖) a lock-based phase that only commits the

transactions that were not able to commit in the first phase. The lock-based commit phase commits

all conflicting transactions by acquiring locks in a TID-ordered sequence. To make the second

phase faster, we have devised a caching scheme to reuse the already-discovered call-graph to avoid

re-executing long function chains whenever possible (§6.3).

6.1 Lock-free Commit Phase
In case of conflict (i.e., a transaction 𝑡 writes a key that another transaction 𝑡 ′ also reads or writes

on), similarly to [42], only the transaction with the lowest transaction ID will succeed to commit

(3). The transactions that have not been committed are put in a queue to be executed in the next

phase 4 (maintaining their previously assigned ID).

In addition, workers (𝑊) send their local conflicts to every other worker through the coordinator

(2 ∗ |𝑊 | messages): this way, every worker retains a global view of all the aborted/rescheduled

transactions and can decide, locally, which transactions can be committed. Finally, note that

transactions can also abort, not because of conflicts but due to application logic failures (e.g., by

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:12 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Ack messageFunction call

F1

F2

F3

F4

F5

F6

t0 t1 t2 t3

F1

F2

F3

F4

F5

F6

t0

Lock-based commit (no caching) Lock-based commit (caching)

t1t4

Fig. 7. If no function caching is performed (left), the transaction execution will execute a deep call-graph; the
messages will be sent sequentially and be equal to the number of function calls (5) in addition to the acks (2).
Styx’s function caching optimization (right) will lead to a concurrent function execution in the lock-based
commit phase, between 𝑡0 and 𝑡1, and send only five acks asynchronously.

throwing an exception due to an integrity constraint violation). In that case, Styx removes the

related entries from the read/write sets to reduce possible conflicts.

In this phase, all the transactions that have not been part of a conflict apply their writes to the

state, commit, and reply to the clients. In the example shown in Figure 4, only 𝑇1 can commit in𝑊1

and𝑊2 due to conflicts in the RW sets of𝑊2 regarding 𝑇2 and 𝑇3; more specifically, at keys 𝑘2 and

𝑘8.

6.2 Lock-based Commit Phase
In the previous phase, 3 , only transactions without conflicts can be committed. We now explain

how Styx deals with transactions that have not been committed in a given epoch due to conflicts

(4). First, Styx acquires locks in a given sequence ordered by transaction ID. Then, it reruns all

transactions concurrently since all the read/write sets are known and commits them. However, if a

transaction’s read/write set changes in this phase, Styx aborts the transaction and recomputes its

read/write set in the next epoch. Now, in Figure 4,𝑊2 can sequentially acquire locks for 𝑇2 and 𝑇3,

leading to their commits in𝑊2 and𝑊3.

6.3 Call-Graph Caching
As depicted in Figure 4, the lock-based commit phase 4 is used to execute any transactions that

did not commit during the lock-free commit phase 3 . By the time the lock-based commit phase

starts, the state of the database may have changed since the lock-free commit. As a result, function

invocations need to be re-executed to account for the data updates.

On the left part of Figure 7, we depict such a function invocation. At time 𝑡0, F1 is invoked,

which in turn invokes two function chains: 𝐹1 → 𝐹2 → 𝐹4 → 𝐹6 and 𝐹1 → 𝐹3 → 𝐹5. Once the two

function chains finish their execution (on time 𝑡4 and 𝑡3 respectively), they can acknowledge their

termination to the root call 𝐹1.

Potential for Caching. During our early experiments, we noticed cases where 𝐹1 is invoked

and the parameters with which it calls 𝐹2 (and in turn the invocations across the 𝐹1 → ... → 𝐹6
call chain) do not change. The same applied to the RW set of those function invocations; the RW

sets remained unchanged. Since Styx tracks those call parameters as well as the functions’ RW

sets, it can cache input parameters during the lock-free commit phase and reuse them during

the lock-based commit, avoiding long sequential re-executions along the call chains. This case is

depicted on the right part of Figure 7: the function-call chain does not need to be invoked in a

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:13

sequential manner from 𝐹1 all the way to 𝐹6, leading to high latency. Instead, the individual workers

can re-invoke those function calls locally and concurrently. As a result, all functions can execute

in parallel and save on latency and network overhead (𝑡4 − 𝑡1 in Figure 7). Furthermore, caching

does not require user input, is transparent to the API, and does not depend on the synchronous or

asynchronous specification. Nonetheless, synchronous calls can be automatically transformed into

asynchronous ones under certain conditions [4, 50].

Conditions for Parallel Function Re-invocation. Intuitively, if the parameters with which, e.g.,

𝐹2 is called, and the RW set of 𝐹2 remains the same, we can safely assume that function 𝐹2 can

be invoked concurrently without having to be invoked sequentially by 𝐹1. If those functions are

successfully completed and acknowledge their completion to the root function 𝐹1, it means that

the transaction can be committed. To the contrary, if the RW set of any of the functions 𝐹1 − 𝐹6
changes, or the parameters of any of the functions along the call chains change, the transaction

must be fully re-executed. In that case, Styx will have to reschedule that transaction to the next

epoch.

6.4 Early Commit-Replies via Determinism
Implementing Styx as a fully deterministic dataflow system offers a set of advantages involving the

ability to communicate transaction commits to external systems (e.g., the client) even before the

state snapshots are persisted to durable storage. A traditional transactional system can respond

to the client only when 𝑖) the requested transaction has been committed to a persistent, durable

state or 𝑖𝑖) the write-ahead log is flushed and replicated. In Styx’s case, that would mean when an

asynchronous snapshot completes (i.e., is persisted to durable storage such as S3), leading to high

latency.

Since Styx implements a deterministic transactional protocol executing an agreed-upon sequence

of transactions among the workers, after a failure, the system would run the same transactions

with exactly the same effects. This determinism enables Styx to give early commit-replies: the client
can receive the reply even before a persistent snapshot is stored. The assumption here is that the

input queue, persisting the client requests, will provide to Styx’s sequencers the requests in the

same order after replay, a guarantee that is typically provided by most modern message brokers.

Performing state mutations and message passing before persistence has also been explored in

DARQ’s speculative execution [38].

7 Fault Tolerance
Styx implements a coarse-grained fault tolerance mechanism. Instead of logging each function

execution, it adopts a variant of existing checkpointing mechanisms used in streaming dataflow

systems [7, 9, 53]. Styx asynchronously snapshots state and stores it in a replicated fault-tolerant

blob store (e.g., Minio / S3), enabling low-latency function execution. We describe Styx’s fault

tolerance mechanism below.

7.1 Incremental Snapshots & Recovery
The snapshotting mechanism of Styx resembles the approach of many streaming systems [3, 7, 21,

27] that extend the seminal Chandy-Lamport snapshots [9]. Modern stream processing systems

checkpoint their state by receiving snapshot barriers at regular time intervals (epochs) decided

by the coordinator. In contrast, Styx leverages an important observation: Workers do not need

to wait for a barrier to enter the system in order to take a snapshot since the natural barrier in a

transactional epoch-based system like Styx is at the end of a transaction epoch.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:14 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Algorithm 1: Snapshotting Mechanism

Result: Compacted Snapshot stored in durable storage

Input :𝛿 : Delta changes,𝑂𝑖𝑛𝑝𝑢𝑡 : Input offset,𝑂𝑜𝑢𝑡𝑝𝑢𝑡 : Output offset, 𝐸𝑐𝑜𝑢𝑛𝑡 : Epoch count, 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 :

Sequence count

Output :S: Compacted snapshot

1 if snapshotInterval then
2 state← 𝛿 ⊲ Prepare data and metadata for snapshot

3 metadata← {𝑂𝑖𝑛𝑝𝑢𝑡 ,𝑂𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 }
4 S𝛿 ← serialize(state, metadata)

5 store S𝛿
6 inform coordinator

7 end
8 if compactionInterval then
9 S ← ∅

10 foreach S𝛿 do
11 S ← compact(S, S𝛿) ⊲ Compact delta snapshots

12 end
13 end

Algorithm 2: Recovery Mechanism

Result: Recovered state from durable storage, possible duplicate messages

Input :S: Latest compacted snapshot,

S𝛿 : Incremental (delta) snapshots,

𝑂𝑙𝑎𝑠𝑡
𝑜𝑢𝑡𝑝𝑢𝑡 : Offset of last output,

Output :R: Set of possible duplicate messages, 𝑠𝑡𝑎𝑡𝑒𝑠 : Snapshotted state,𝑂𝑠
𝑖𝑛𝑝𝑢𝑡

: Snapshotted input offset,

𝑂𝑠
𝑜𝑢𝑡𝑝𝑢𝑡 : Snapshotted output offset, 𝐸𝑠𝑐𝑜𝑢𝑛𝑡 : Snapshotted epoch count, 𝑆𝐸𝑄𝑠

𝑐𝑜𝑢𝑛𝑡 : Snapshotted sequencer

count

1 if S𝛿 ≠ ∅ then
2 S ← compact(S, S𝛿) ⊲ Compact delta snapshots, if any

3 end
4 𝑠𝑡𝑎𝑡𝑒𝑠 ,𝑂𝑠

𝑖𝑛𝑝𝑢𝑡
,𝑂𝑠

𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐸
𝑠
𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄

𝑠
𝑐𝑜𝑢𝑛𝑡 ← deserialize S′

⊲ Extract persisted state

5 𝑅 ← {𝑚 | 𝑂𝑠
output

≤ 𝑚 ≤ 𝑂𝑙𝑎𝑠𝑡
output

} ⊲ Possible duplicates (§7.4)

Snapshotting. To this end, instead of taking snapshots periodically by propagating markers

across the system’s operators, Styx aligns snapshots with the completion of transaction epochs to

take a consistent cut of the system’s distributed state, including the state of the latest committed

transactions, the offsets of the message broker, and the sequencer counters (𝑙𝑐). The minimal

information included in the snapshot is O(𝑁 + 𝑐), where 𝑁 is the number of updates affecting the

delta map, and 𝑐 is the fixed number of integers stored for the Kafka offsets and the sequencer

variables.

When the snapshot interval triggers, Styx makes a copy of the current state changes to a

parallel thread and persists incremental snapshots asynchronously, allowing Styx to continue

processing incoming transactions while the snapshot operation is performed in the background.

The snapshotting procedure is described in Algorithm 1.

Recovery. In case of a system failure, Styx 𝑖) rolls back to the epoch of the latest completed

snapshot, 𝑖𝑖) loads the snapshotted state, 𝑖𝑖𝑖) rolls back the replayable source’s topic partitions (that
are aligned with the Styx operator partitions) to the offsets at the time of the snapshot, 𝑖𝑣) loads

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:15

Snapshot interval

Compacted StateState

Delta Map

t(s)

Compaction interval

Snapshot Store

Worker

Fig. 8. Incremental snapshots with Delta Maps in Styx.

the sequencer counters, and finally, 𝑣) verifies that the cluster is healthy before executing a new

epoch. The recovery procedure is described in Algorithm 2.

Incremental Snapshots & Compaction. Each snapshot stores a collection of state changes in the

form of delta maps. A delta map is a hash table that tracks the changes in a worker’s state in a given

snapshot interval. When a snapshot is taken, only the delta map containing the state changes of

the current interval is snapshotted. To avoid tracking changes across delta maps, Styx periodically

performs compactions where the deltas are merged in the background, as shown in Figure 8. The

cost of compacting is equivalent to the cost of merging two hashmaps with the same key-spaces

(O(𝑁)). The total cost will be O(𝑀 ∗ 𝑁), with𝑀 denoting the number of deltamaps we need to

compact.

7.2 Sequencer Recovery
To guarantee determinism, upon recovery, Styx’s sequencer needs to generate identical sequences as

the ones generated between the latest snapshot and failure. The recovery protocol of the sequencer

operates as follows: At first, during the snapshot, we store the local counter of each sequencer

partition (𝑙𝑐) with its id (𝑠𝑖𝑑) and the epoch counter. Additionally, at the start of each epoch, Styx

logs the number of transactions contained in that epoch, denoted as epoch size. Logging the epoch

sizes is needed due to Styx’s varying epoch sizes and the sequencer rebalancing scheme (§5.1). After

failure, the recovered sequencer partitions are initialized with the snapshot’s 𝑙𝑐 and 𝑠𝑖𝑑 . Afterward,

each partition retrieves from its log all the sizes of all epochs executed since the last snapshot.

Finally, after recovery, the sequencer matches the epoch sizes to the ones recorded by the log,

leading to the same global sequence observed before failure.

7.3 Exactly-Once Processing
At first, the durable input queue, which acts as a replayable source, allows Styx to replay requests

after failures. By rolling back the queue partitions (aligned with system operator partitions) to

the respective offsets as recorded in the latest snapshot, Styx can reprocess only the transactions

whose state changes are not reflected yet in the snapshot. Transactions committed and early

commit-replies stored in the egress can be deduplicated (§7.4).

Styx runs each transaction to its completion in a single epoch. A given transaction can execute a

large call-graph of functions that can affect the state. If a failure occurs, a transaction’s state effects

are restored to the latest snapshot, and the complete transaction is re-executed. As a result, no

special attention is required to ensure that remote function calls are executed exactly-once, except

for resetting all TCP channels between Styx’s workers after recovery.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:16 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Lemma 7.1. The state mutations of committed transactions in Styx are reflected exactly-once, even
upon failure.

Proof. Let 𝑆𝑡 denote the state of the system at time 𝑡 .𝑄𝑡 = {𝑟1, . . . , 𝑟𝑛} denotes the durable input
queue at time 𝑡 that holds all requests 𝑟𝑖 to be processed. We assume that the input queue operates as

FIFO and requests 𝑟𝑖 are deterministic. Each 𝑟𝑖 will be sequenced as a transaction𝑇𝑖 = {𝑢𝑝𝑑𝑙 , 𝑓 𝑢𝑛𝑐𝑚}
by a deterministic sequencer, where 𝑢𝑝𝑑𝑙 are the state updates and 𝑓 𝑢𝑛𝑐𝑚 are the function calls of

the transaction. We assume that 𝑢𝑝𝑑𝑙 happens atomically and 𝑓 𝑢𝑛𝑐𝑚 is also reflected once, given

the use of a reliable communication protocol. Given the same initial state 𝑆 and input from 𝑄 ,

it always produces the same state transition 𝑆 → 𝑆 ′,which means 𝑆 ′𝑡+1 = 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑆𝑡 , 𝑄𝑡). The
execution of a transaction 𝑇𝑖 is deterministic.

At any time 𝑡 , the state of the system 𝑆𝑡 reflects all transactions in𝑄𝑡 that have been fully executed

and committed. Accordingly, the state 𝑆𝑡 ignores partially executed or in-progress transactions in𝑄𝑡 .

We denote the latest durable snapshot taken up to time 𝑡 , as Snapshot(𝑆𝑡 , 𝑖, 𝑛) where 𝑛 corresponds

to the offsets of the first request 𝑟𝑖 , and last request 𝑟𝑛 of the input queue to be processed up to time 𝑡 .

Upon failure, a subset of𝑄𝑡 ,𝑄
𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑡 = {𝑟1, . . . , 𝑟𝑘 } will contain successfully committed transactions

and a subset𝑄
𝑓 𝑎𝑖𝑙

𝑡 = {𝑟𝑘+1, . . . , 𝑟𝑛} will contain aborted transactions such that𝑄𝑡 = 𝑄𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑡 +𝑄 𝑓 𝑎𝑖𝑙

𝑡 .

In order to recover from a failure, 𝑄𝑡 is rolled back to 𝑆𝑡 from Snapshot(𝑆𝑡 , 𝑖, 𝑛) as we persist the
offsets of our input queue. Transactions in 𝑄𝑡 are replayed in the original order from offset 𝑖 to

offset 𝑛 of our input queue. This is ensured by the FIFO queue and the deterministic sequencer. After

processing the input transactions, 𝑄𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑡 includes requests already reflected in Snapshot(𝑆𝑡), and

𝑄
𝑓 𝑎𝑖𝑙

𝑡 includes pending requests. Since Snapshot(𝑆𝑡) reflects 𝑄𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑡 and 𝑄𝑡 = 𝑄𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡 +𝑄 𝑓 𝑎𝑖𝑙

𝑡 , the

replay and processing ensure: 𝑆 ′′𝑡+1 =𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑆𝑡 , 𝑄 𝑓 𝑎𝑖𝑙

𝑡) = 𝑆 ′𝑡+1. Thus, the effects of all transactions
will be reflected in the state exactly-once, even after failure. □

7.4 Exactly-Once Output
A common challenge in the fault tolerance of streaming systems is that of the exactly once output [15,

19] in the presence of failures, which is hard to solve for low-latency use cases. For example, in

Apache Flink’s [8] exactly-once output configuration, clients can only retrieve responses after those

are persisted in a snapshot or a transactional sink. This arrangement is sufficient for streaming

analytics but not for low-latency transactional workloads, as discussed previously in §6.4.

To solve that, during recovery, Styx: 𝑖) reads the last offset of the egress topic, 𝑖𝑖) compares it

with the output offset persisted in the snapshot, determining for which transactions the clients

have already received replies, 𝑖𝑖𝑖) retrieves the TIDs attached in those replies, and 𝑖𝑣) does not send
a reply again to the egress topic for those transactions. Note that this deduplication strategy is

based on the fact that TIDs have been assigned deterministically.

7.5 Addressing Non-Deterministic Functions
As discussed in §7.1 Styx’s recovery mechanism is based on deterministic replay. To this end,

Styx requires that the functions authored by developers are also deterministic, i.e., replaying the

same function multiple times, using the same inputs and database state, should yield the same

results. However, one can achieve determinism even in the presence of non-deterministic logic

inside functions, such as randomness (e.g., random numbers/sampling) or calls to external systems

(e.g., calling an external database or API). Styx can follow the approach of existing systems (e.g.,

Temporal [60], Clonos [53]). In the following, we explain how this can be achieved.

Randomness. To retain determinism in the case of randomness, Styx can use an external fault

tolerant write-ahead log (WAL) to log the random number along with the TID. Thus, in the case of

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:17

External
System

WorkermWorker1

…

…
1

m

Sequencer

Function
Executor

P

Sequencer

Function
Executor

P

Snapshot Store

Styx

Output Queue

Input Queue

1

2
3

Fig. 9. External system call critical points and Styx.

failure and replay, Styx can use the logged random number, essentially making the function call

deterministic during replay.

Calls to External Systems. As illustrated in Figure 9, an interaction with an external system

needs to consider three critical points to maintain determinism. Styx assumes that the external

system supports idempotency [26], meaning that if a call is made twice with the same idempotency

key, the effects on the external system’s state and its return value will remain the same. In 1 Styx

needs to log the idempotency key and the TID in the WAL before calling the external system. If the

external system produces a response (2), Styx can store it in the WAL and retrieve it from there in

case of replay. Finally, when Styx completes a snapshot (3), it can also clear the WAL for garbage

collection since the prior entries are not needed.

Finally, Styx could mask those operations behind an API that exposes the following functionality,

such as styx.random for random number generation and styx.call_external for external system
calls.

8 Evaluation
We evaluate Styx by answering the following questions:

– (§8.2) How does Styx compare to State-of-the-Art serializable transactional SFaaS systems?

– (§8.2) How does Styx perform under skewed workload?

– (§8.3) How well does Styx scale?

– (§8.4) Does the snapshotting mechanism affect performance?

8.1 Setup

Systems Under Test. In the evaluation, we include SFaaS systems that provide serializable trans-

actional guarantees. Those are:

Beldi [63]/Boki [28]. Both systems use a variant of two-phase commit and Nightcore [29] as their

function runtime and store their data in DynamoDB. Additionally, Boki is deployed with the latest

improvements of Halfmoon [51].

T-Statefun [12]. T-Statefun maintains the state and the coordination of the two-phase commit

protocol within an Apache Flink cluster and ships the relevant state to remote stateless functions

for execution. For fault tolerance, it relies on a RocksDB state backend that performs incremental

snapshots.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:18 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Scenario #keys Function Calls Transactions %
YCSB-T 10k 2 100%

Deathstar Movie 2k 9-10 0%

Deathstar Travel 2k 3 0.5%

TPC-C 1m-100m 8 / 20-50 100%

Table 1. Workload characteristics.

Styx. Styx is implemented in Python 3.12 and uses coroutines to enable asynchronous concurrent

execution. Apache Kafka is used as an ingress/egress, and Minio/S3 [45] is used as a remote

persistent store for Styx’s incremental snapshots. Finally, Styx is a standalone containerized system

that works on top of Docker and Kubernetes for ease of deployment.

Workloads/Benchmarks. Table 1 summarizes the three workloads used in the experiments.

YSCB-T [14].We use a variant of YCSB-T [14] where each transaction consists of two reads and two

writes. The concrete scenario is as follows: First, we create 10.000 bank accounts (keys) and perform

transactions in which a debtor attempts to transfer credit to a creditor. This transfer is subject to a

check on whether the debtor has sufficient credit to fulfill the payment. If not, a rollback needs to

be performed. The selection of a relatively small number of keys is deliberate: we want to assess

the systems’ ability to sustain transactions under high contention. In addition, for the experiment

depicted in Figure 11 (skewed distribution), we select the debtor key based on a uniform distribution

and the creditor based on a Zipfian distribution, where we can vary the level of contention by

modifying the Zipfian coefficient.

Deathstar [20].We employDeathstar [20], as adapted to SFaaSworkloads by the authors of Beldi [63].

It consists of two workloads: 𝑖) the Movie workload implements a movie review service where

users write reviews about movies, 𝑖𝑖) the Travel workload implements a travel reservation service

where users search for hotels and flights, sort them by price/distance/rate, find recommendations,

and transactionally reserve hotel rooms and flights. Both Deathstar workloads follow a uniform

distribution. Note that T-Statefun could not run in this set of experiments since it does not support

range queries.

TPC-C [37]. The prime transactional benchmark targeting OLTP systems is TPC-C [37]. In our

evaluation, we employ the NewOrder and Payment transactions, and we had to rewrite them into

the SFaaS paradigm, splitting the NewOrder transaction into 20-50 function calls (one call for each

item in the NewOrder transaction) and the Payment transaction into 8 function calls. TPC-C scales

in size/partitions by increasing the number of warehouses represented in the benchmark. While

a single warehouse represents a skewed workload (all transactions will hit the same warehouse),

increasing the number of warehouses decreases the contention, allowing for higher throughput and

lower latency. Note that the TPC-C experiments do not include Beldi, Boki, or T-Statefun because

they do not support it.

Resources. For Beldi/Boki, T-Statefun and Styx, we assigned a total of 112 CPUs with 2GBs of RAM

per CPU, matching what is presented in the original Boki paper [28]. Additionally, throughout all

the evaluation scenarios, the data fit in memory across all systems. Unless stated otherwise, Styx

and T-Statefun are configured to perform incremental snapshots every 10 seconds. All external

systems, i.e., DynamoDB (Beldi, Boki), Minio, and Kafka (Styx, T-Statefun), are configured with

three replicas for fault tolerance.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:19

102 103 104

Input Throughput (transactions/s)
101

102

103

104

La
te

nc
y

(m
s)

Styx 50p
Styx 99p

Beldi 50p
Beldi 99p

T-Statefun 50p
T-Statefun 99p

Boki 50p
Boki 99p

(a) YCSB-T (uniform).

102 103 104 105

Input Throughput (transactions/s)

101

102

103

104

La
te

nc
y

(m
s)

Styx 50p
Styx 99p

Beldi 50p
Beldi 99p

Boki 50p
Boki 99p

(b) Deathstar Travel Reservation.

102 103 104

Input Throughput (transactions/s)

101

102

103

104

105

La
te

nc
y

(m
s)

Styx 50p
Styx 99p

Beldi 50p
Beldi 99p

Boki 50p
Boki 99p

(c) Deathstar Movie Review.

0 500 1000 1500 2000 2500 3000 3500
Input Throughput (transactions/s)

102

103

104

105

La
te

nc
y

(m
s)

W=1 50p
W=1 99p

W=10 50p
W=10 99p

W=100 50p
W=100 99p

(d) TPC-C on Styx with 1, 10, and 100 warehouses.

Fig. 10. Evaluation in different scenarios. T-Statefun does not support range queries required by the Deathstar
workloads. TPC-C is only supported by Styx.

External Systems. Boki and Beldi use a fully managed DynamoDB instance at AWS, which does not

state the amount of resources it occupies and is additional to the 112 CPUs assigned to Boki and

Beldi. Similarly, the resources assigned to Minio/S3 (Styx and T-Statefun) are not accounted for.

Metrics. Our goal is to observe systems’ behavior, measured by their latency while varying the

input throughput.

Input throughput represents the number of transactions submitted per second to the system under

test. As the input throughput increases during an experiment, we expect the latency of individual

transactions to increase until aborts start to manifest due to contention or high load.

Latency represents the time interval between submitting a transaction and the reported time

when the transaction is committed/aborted. In Styx and T-Statefun, the latency timer starts when

a transaction is submitted in the input queue (Kafka) and stops when the system reports the

transaction as committed/aborted in the output queue. Similarly, in Beldi and Boki, the latency is

the time since the input gateway has received a transaction and the time that the gateway reports

that the transaction has been committed/aborted.

8.2 Latency vs. Throughput
We first study the latency-throughput tradeoff of all systems. We retain the resources given to the

systems constant (112 CPUs) while progressively increasing the input throughput. We measure

the transaction latency. As depicted in Figure 10, Styx outperforms its baseline systems by at

least an order of magnitude. Specifically, in YCSB-T (Figure 10a), Styx achieves a performance

improvement of ~20x in terms of throughput against T-Statefun, which ranks second. In addition,

Styx outperforms Boki by ~30x in Deathstar’s travel reservation workload (Figure 10b) and by ~35x

in Deathstar’s movie review Figure 10c) workload. Finally, in the TPC-C benchmark (Figure 10d),

which requires a large number of function calls per transaction (20-50), we observe that Styx’s

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:20 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

0.0 0.2 0.4 0.6 0.8 1.0
Zipfian const

101

102

103

La
te

nc
y

(m
s)

Styx@2K 50p
Styx@2K 99p

Styx@3K 50p
Styx@3K 99p

T-Statefun@700 50p
T-Statefun@700 99p

Fig. 11. Latency evaluation for varying levels of contention (0.0 - 0.999) with YCSB-T (skewed). We ran Styx
with two different input throughput variations to show its behavior under contention clearly. Note that Styx
and T-Statefun execute all transactions to completion (abort%=0).

0.0 0.2 0.4 0.6 0.8 0.9 0.99 0.999

Beldi Abort % 47.93 45.54 44.31 47.28 52.40 56.06 61.62 60.70

CMT TPS 104 108 111 105 95 76 76 78

Boki Abort % 48.77 48.23 49.54 51.82 61.29 68.50 74.47 70.71

CMT TPS 359 362 353 337 271 220 179 205

Table 2. Evaluation of Boki and Beldi for varying levels of contention with YCSB-T. We report the abort
ratio and committed transactions rate and omit latency since the systems do not execute all transactions to
completion. Both run at their maximum sustainable throughput.

performance improves as we increase the input throughput for different numbers of warehouses,

reaching up to 3K TPS with sub-second 99
th
percentile latency (100 warehouses).

Aborts & Throughput. Beldi and Boki follow a no-wait-die concurrency control approach, which

leads to a significant amount of aborts as the throughput increases. Styx and T-Statefun do not

use such a transaction abort mechanism. Instead, they execute all transactions to completion. This

difference in handling transactions under high load makes the latencies across systems hard to

compare. For this reason, in Figure 11, we plot the results of Styx and T-Statefun and present the

performance of Beldi and Boki in a separate table (Table 2), alongside their abort rates.

We observe the following: 𝑖) at the highest level of contention (𝑍𝑖𝑝 𝑓 𝑖𝑎𝑛 at 0.999) Styx achieves at

least 2000 TPS, outperforming the rest by ~5-10x in terms of effective throughput, 𝑖𝑖) both Beldi and

Boki (that run at their maximum sustainable throughput) abort more transactions as the level of

contention increases (~40-70%), which significantly impacts their effectiveness as shown in Table 2,

and 𝑖𝑖𝑖) Styx shows an increase in latency only in high levels of contention (𝑍𝑖𝑝 𝑓 𝑖𝑎𝑛 > 0.99) while

executing at ~4x higher throughput than the rest.

Runtime Breakdown. In Table 3, we show where the systems under test spend their processing

time. We use YCSB-T for this purpose since it is the only benchmark supported by all the systems

(§8.1). We measured the median latency while all the systems were running at 100 TPS for 60

seconds and averaged the proportions of function execution, networking, and state access across all

committed transactions. The key observations are: 𝑖) Styx’s co-location of processing and state led

to minimal state access latency, and 𝑖𝑖) Styx’s asynchronous networking allows for lower network

latency.

Takeaway. The rather large performance advantages of Styx across all experiments are enabled by

the following three properties and design choices: 𝑖) the co-location of processing and state with

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:21

System Function Execution Networking State Access
Styx 0.34ms - 2.2% 14.33ms - 95.6% 0.32ms - 2.2%
Boki 1.1ms - 3.3% 16.1ms - 49% 15.68ms - 47.7%

T-Statefun 2.76ms - 2.2% 92.12ms - 74.3% 29.11ms - 23.5%

Beldi 1.01ms - 0.7% 56.58ms - 38.4% 89.57ms - 60.9%

Table 3. Performance breakdown of all systems. (median latency - percentage from the total)

2 4 6 8 10 12 14 16 24 32
Workers

50K

100K

150K

200K

Th
ro

ug
hp

ut
 (T

PS
)

0% 20% 50% 100%

Fig. 12. Scalability of Styx on YCSB-T with varying percentages of multi-partition transactions.

efficient networking as shown in Table 3, contrary to the other systems that have to transfer the

state to their function execution engines; 𝑖𝑖) the asynchronous snapshots with delta maps for fault

tolerance compared to the replication of Beldi/Boki and the LSM-tree-based incremental snapshots

of T-Statefun; 𝑖𝑖𝑖) the efficient transaction execution protocol employed in Styx compared to the

two-phase commit used by Styx’s competition.

8.3 Scalability
In this experiment, we test the scalability of Styx by increasing the number of Styx workers. Each

worker is assigned 1 CPU and a state of 1 million keys. We measure the maximum throughput on

YCSB-T. The goal is to calculate the speedup of operations as the input throughput and number of

workers scale together. In addition, we control the percentage of multi-partition transactions in the

workload, i.e., transactions that span across workers. In Figure 12, we observe that in all settings,

Styx retains near-linear scalability. Finally, Styx displays the expected behavior as the number of

multi-partition transactions increases.

8.4 Fault-Tolerance Evaluation

Effect of Snapshots. In Figure 13, we depict the impact of the asynchronous incremental snapshots

to Styx’s performance. In both figures, we mark when a snapshot starts and ends. The state includes

1 million keys, and we use a 1-second snapshot interval. Styx is deployed with four 1-CPU workers,

and the input transaction arrival rate is fixed to 3K YCSB-T TPS. In Figure 13a, we observe that

during a snapshot operation, Styx shows virtually no performance degradation in throughput. In

Figure 13b, we observe a minor increase in the end-to-end latency in some snapshots. The reason

for that is the concurrent snapshotting thread, which competes with the transaction execution

thread during snapshotting. At the same time, it also has to block the transaction execution thread

momentarily to copy the corresponding operator’s state delta.

Recovery Time. In Figure 14, we evaluate the recovery process of Styx with the same parameters as

in Figure 13. We reboot a Styx worker at ~13.5 seconds. It takes Styx’s coordinator roughly a second

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:22 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

2 3 4 5 6
Time (seconds)

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

K
Tr

an
sa

ct
io

ns
 p

er
 S

ec
on

d

Output Throughput
Input Throughput

Snapshot Start
Snapshot End

(a) Throughput

2 3 4 5 6
Time (seconds)

0

5

10

15

20

25

30

35

40

La
te

nc
y

(m
s)

99p
50p

Snapshot Start
Snapshot End

(b) Latency

Fig. 13. Impact of Styx’s snapshotting on performance

12 14 16 18
Time (seconds)

0

2

4

6

8

10

12

K
Tr

an
sa

ct
io

ns
 p

er
 S

ec
on

d

Output Throughput
Input Throughput

Worker Failure Detected
Recovery Complete

(a) Throughput

12 14 16 18
Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(s
ec

on
ds

)

99p
50p

Worker Failure Detected
Recovery Complete

(b) Latency

Fig. 14. Styx’s behavior during recovery.

to detect the failure. Then, after the reboot, the coordinator re-registers the worker and notifies all

workers to load the last complete snapshot, merge any uncompacted deltas, and use the message

broker offsets of that snapshot. The recovery time is also observed in the latency (Figure 14b) that

is ~2.5 seconds (time to detect the failure in addition to the time to complete recovery). In terms

of throughput (Figure 14a), we observe Styx working on its maximum throughput after recovery

completes to keep up with the backlog and the input throughput.

Effect of Large State Snapshots. In Figure 15, we test the incremental snapshotting mechanism

against a larger state of 20 GB from TPC-C using a bigger Styx deployment of 100 1-CPU workers

at 10-second checkpoint intervals. From 0 to the 750-second mark, Styx is importing the dataset.

Since there are no small deltas (importing is an append-only operation), snapshotting is more

expensive than the normal workload execution, where only the deltas are stored in the snapshots.

The increase in latency at ~550 seconds corresponds to the loading of the largest tables (Stock and

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

Styx: Transactional Stateful Functions on Streaming Dataflows 226:23

0 200 400 600 800 1000
Runtime (s)

102

103
Sn

ap
sh

ot
tin

g
tim

e
(m

s)

Start bulk load ~ 20GB
Start TPC-C@ 1K TPS

Fig. 15. Behaviour of incremental snapshots on Styx with ~20GB TPC-C state.

Order-Line) in the system. After loading the data and starting the transactional workload at 1000

TPS, we observe a drop in latency due to fewer state changes within the delta maps.

9 Related Work

Transactional SFaaS. SFaaS has received considerable research attention and open-source work.

Transactional support with fault tolerance guarantees (that popularized DBMS systems) is nec-

essary to widen the adoption of SFaaS. Existing systems fall into two categories: i) those that

focus on transactional serializability and ii) those that provide eventual consistency. The first

category includes Beldi [63], Boki [28], and T-Statefun [12]. Beldi implements linked distributed

atomic affinity logging on DynamoDB to guarantee serializable transactions among AWS Lambda

functions with a variant of the two-phase commit protocol. Boki extends Beldi by adding trans-

action pipeline improvements regarding the locking mechanism and workflow re-execution. In

turn, Halfmoon [51] extends Boki with an optimal logging implementation. T-Statefun [12] also

uses two-phase commit with coordinator functions to support serializability on top of Apache

Flink’s Statefun. For eventually-consistent transactions, T-Statefun implements the Saga pattern.

Cloudburst [56] also provides causal consistency guarantees within a DAG workflow. Proposed

more recently, Netherite [5] offers exactly-once guarantees and a high-level programming model

for Microsoft’s Durable Functions [6], but it does not guarantee transactional serializability across

functions. Unum [41] needs to be paired with Beldi or Boki to ensure end-to-end exactly-once and

transactional guarantees.

Dataflow Systems. Support for fault-tolerant execution in the cloud with exactly-once guar-

antees [7, 16] is one of the main drivers behind the wide adoption of modern dataflow systems.

However, they lack a general and developer-friendly programming model with support for trans-

actions and a natural way to program function-to-function calls. Closer to the spirit of Styx are

Ciel [47] and Noria [22]. Ciel proposes a language and runtime for distributed fault-tolerant com-

putations that can execute control flow. Noria solves the view maintenance problem via a dataflow

architecture that can propagate updates to clients quickly, targeting web-based, read-heavy compu-

tations. However, neither of the two provides a transactional model for workflows of functions like

Styx.

Transactional Protocols. Besides Aria [42], which inspired the protocol we created for Styx

(§4), two other protocols fit the requirement of no a priori read/write set knowledge: Starry [65]

and Lotus [66].. Starry targets replicated databases with a semi-leader protocol for multi-master

transaction processing. At the same time, Lotus [66] focuses on improving the performance of

multi-partition workloads using a newmethodology called run-to-completion-single-thread (RCST).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

226:24 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

Styx makes orthogonal contributions to these works and could adopt multiple ideas from them in

the future.

10 Future Work

Elasticity in Dataflow Systems. Extensive work has been carried out in dynamic reconfiguration

[17, 22, 30] and state migration [13, 24, 25] of streaming dataflow systems over the last few years.

These advancements are necessary for providing serverless elasticity in the case of state and

compute collocation to leverage dataflows as an execution model for serverless stateful cloud

applications, which is a future goal of Styx.

Replication for High Availability. In the Styx architecture, replication is only applied in the

snapshot store and the Input/Output queues to ensure fault tolerance. For high-availability, Styx

could adopt replication mechanisms from deterministic databases. Specifically, the design of deter-

ministic transaction protocols, such as Calvin [61], feature state replicas that require no explicit

synchronization. First, the sequencer replicas need to agree on the order of execution. After that,

the deterministic sequencing algorithm guarantees that the resulting state will be the same across

partition/worker replicas by all replicas executing state updates in the same order.

Non-Deterministic Functions on Streaming Dataflows. In its current version, Styx requires

application logic to be deterministic, similar to OLTP [31, 58], where stored procedures are required

to be deterministic since they run independently on different replicas. The same determinism

requirement applies to SFaaS [12, 28] systems. However, real-world applications may encapsulate

logic that makes the outcome of their execution non-deterministic. Examples of non-deterministic

operations are calls to external systems and using random number generators or time-related

activities. That said, we have a plan for supporting non-deterministic functions in Styx, as discussed

in §7.5.

11 Conclusion
This paper presented Styx, a distributed streaming dataflow system that supports multi-partition

transactions with serializable isolation guarantees through a high-level, standard Python program-

ming model that obviates transaction failure management, such as retries and rollbacks. Styx

follows the deterministic database paradigm while implementing a streaming dataflow execution

model with exactly-once processing guarantees. Styx outperforms the state-of-the-art by at least

one order of magnitude in all tested workloads regarding throughput.

Acknowledgments
We want to thank Paris Carbone for his advice throughout the process of developing Styx and the

anonymous reviewers for their constructive feedback. This publication is part of project number

19708 of the Vidi research program, partly financed by the Dutch Research Council (NWO).

References
[1] Daniel J. Abadi and Jose M. Faleiro. 2018. An overview of deterministic database systems. Commun. ACM 61, 9, 78–88.

doi:10.1145/3181853

[2] Amazon. 2025. AWS Step Functions. https://aws.amazon.com/step-functions Accessed on April 07, 2025.

[3] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica,

and Matei Zaharia. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In

Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 601–613. doi:10.1145/

3183713.3190664

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

https://doi.org/10.1145/3181853
https://aws.amazon.com/step-functions
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/3183713.3190664

Styx: Transactional Stateful Functions on Streaming Dataflows 226:25

[4] Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu K. Lahiri. 2022. Automated Synthesis of

Asynchronizations. In Static Analysis - 29th International Symposium, SAS 2022, Auckland, New Zealand, December 5-7,
2022, Proceedings (Lecture Notes in Computer Science, Vol. 13790), Gagandeep Singh and Caterina Urban (Eds.). Springer,

135–159. doi:10.1007/978-3-031-22308-2_7

[5] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Konstantinos Kallas, Connor McMahon,

Christopher Meiklejohn, and Xiangfeng Zhu. 2022. Netherite: Efficient Execution of Serverless Workflows. Proc. VLDB
Endow. 15, 8 (2022), 1591–1604. doi:10.14778/3529337.3529344

[6] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, ConnorMcMahon, and Christopher S. Meiklejohn.

2021. Durable functions: semantics for stateful serverless. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–27.

doi:10.1145/3485510

[7] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas Tzoumas. 2017. State Management in

Apache Flink®: Consistent Stateful Distributed Stream Processing. Proc. VLDB Endow. 10, 12, 1718–1729. doi:10.14778/
3137765.3137777

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015).

[9] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems.

ACM Trans. Comput. Syst. 3, 1, 63–75. doi:10.1145/214451.214456
[10] Chaoyi Cheng,MingzheHan, NuoXu, Spyros Blanas, Michael D. Bond, and YangWang. 2023. Developer’s Responsibility

or Database’s Responsibility? Rethinking Concurrency Control in Databases. In 13th Conference on Innovative Data
Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org. https://www.cidrdb.

org/cidr2023/papers/p30-cheng.pdf

[11] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae Milano. 2021. New Directions in Cloud Programming.

In 11th Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf

[12] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos. 2021. Distributed transactions

on serverless stateful functions. In 15th ACM International Conference on Distributed and Event-based Systems, DEBS
2021, Virtual Event, Italy, June 28 - July 2, 2021, Alessandro Margara, Emanuele Della Valle, Alexander Artikis, Nesime

Tatbul, and Helge Parzyjegla (Eds.). ACM, 31–42. doi:10.1145/3465480.3466920

[13] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020. Rhino: Efficient management of very

large distributed state for stream processing engines. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. 2471–2486.

[14] Akon Dey, Alan D. Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+T: Benchmarking web-scale transactional

databases. InWorkshops Proceedings of the 30th International Conference on Data Engineering Workshops, ICDE 2014,
Chicago, IL, USA, March 31 - April 4, 2014. IEEE Computer Society, 223–230. doi:10.1109/ICDEW.2014.6818330

[15] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A survey of rollback-recovery protocols in

message-passing systems. ACM Comput. Surv. 34, 3 (2002), 375–408. doi:10.1145/568522.568525
[16] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter R. Pietzuch. 2014. Making State Explicit

for Imperative Big Data Processing. In Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC
2014, Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai Zeldovich (Eds.). USENIX Association, 49–60.

https://www.usenix.org/conference/atc14/technical-sessions/presentation/castro-fernandez

[17] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ramasamy. 2017. Dhalion: Self-Regulating

Stream Processing in Heron. Proc. VLDB Endow. 10, 12 (2017), 1825–1836. doi:10.14778/3137765.3137786
[18] The Apache Software Foundation. 2025. Apache Airflow. https://airflow.apache.org Accessed on April 07, 2025.

[19] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos. 2024. A survey on the evolution of

stream processing systems. VLDB J. 33, 2 (2024), 507–541. doi:10.1007/S00778-023-00819-8
[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian

Ritchken, Brendon Jackson, et al. 2019. An open-source benchmark suite for microservices and their hardware-software

implications for cloud & edge systems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 3–18.

[21] Can Gencer, Marko Topolnik, Viliam Durina, Emin Demirci, Ensar B. Kahveci, Ali Gürbüz, József Bartók, Grzegorz

Gierlach, Frantisek Hartman, Ufuk Yilmaz, Ondrej Lukás, Mehmet Dogan, Mohamed Mandouh, Marios Fragkoulis,

and Asterios Katsifodimos. 2021. Hazelcast Jet: Low-latency Stream Processing at the 99.99th Percentile. Proc. VLDB
Endow. 14, 12, 3110–3121. doi:10.14778/3476311.3476387

[22] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans Kaashoek,

and Robert Morris. 2018. Noria: dynamic, partially-stateful data-flow for high-performance web applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

https://doi.org/10.1007/978-3-031-22308-2_7
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1145/3485510
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1145/214451.214456
https://www.cidrdb.org/cidr2023/papers/p30-cheng.pdf
https://www.cidrdb.org/cidr2023/papers/p30-cheng.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1145/3465480.3466920
https://doi.org/10.1109/ICDEW.2014.6818330
https://doi.org/10.1145/568522.568525
https://www.usenix.org/conference/atc14/technical-sessions/presentation/castro-fernandez
https://doi.org/10.14778/3137765.3137786
https://airflow.apache.org
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.14778/3476311.3476387

226:26 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 213–231. https://www.usenix.org/

conference/osdi18/presentation/gjengset

[23] Jim Gray. 1978. Notes on Data Base Operating Systems. 60 (1978), 393–481. doi:10.1007/3-540-08755-9_9

[24] Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, and Yihua Huang. 2022. Meces: Latency-efficient Rescaling

via Prioritized State Migration for Stateful Distributed Stream Processing Systems. In Proceedings of the 2022 USENIX
Annual Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, Jiri Schindler and Noa Zilberman

(Eds.). USENIX Association, 539–556. https://www.usenix.org/conference/atc22/presentation/gu-rong

[25] Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John Liagouris, and Timothy Roscoe. 2019.

Megaphone: Latency-conscious state migration for distributed streaming dataflows. Proc. VLDB Endow. 12, 9 (2019),
1002–1015. doi:10.14778/3329772.3329777

[26] IETF. 2025. The Idempotency-Key HTTP Header Field. https://www.ietf.org/archive/id/draft-ietf-httpapi-idempotency-

key-header-06.txt Accessed on April 07, 2025.

[27] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor Dogaru, Eric Johnson, Michael Spicer,

and Ahmet Erdem Sariyüce. 2016. Consistent Regions: Guaranteed Tuple Processing in IBM Streams. Proc. VLDB
Endow. 9, 13, 1341–1352. doi:10.14778/3007263.3007272

[28] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with Shared Logs. In SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, Robbert
van Renesse and Nickolai Zeldovich (Eds.). ACM, 691–707. doi:10.1145/3477132.3483541

[29] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable serverless computing for latency-sensitive,

interactive microservices. In Proceedings of the 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 152–166.

[30] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava C. Dimitrova, Matthew Forshaw, and Timothy Roscoe.

2018. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows. In

13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 783–798. https://www.usenix.org/

conference/osdi18/presentation/kalavri

[31] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B. Zdonik, Evan P. C. Jones,

Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,

distributed main memory transaction processing system. Proc. VLDB Endow. 1, 2, 1496–1499. doi:10.14778/1454159.
1454211

[32] Tom Killalea. 2016. The hidden dividends of microservices. Commun. ACM 59, 8 (2016), 42–45. doi:10.1145/2948985

[33] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging system for log processing. In Proceedings
of the NetDB, Vol. 11. 1–7.

[34] Rodrigo N. Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and Marcos Kalinowski. 2021. Data

Management in Microservices: State of the Practice, Challenges, and Research Directions. Proc. VLDB Endow. 14, 13
(2021), 3348–3361. doi:10.14778/3484224.3484232

[35] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program.
Lang. Syst. 4, 3 (1982), 382–401. doi:10.1145/357172.357176

[36] Andrea Lattuada, Frank McSherry, and Zaheer Chothia. 2016. Faucet: a user-level, modular technique for flow control

in dataflow engines. In Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond, BeyondMR@SIGMOD 2016, San Francisco, CA, USA, July 1, 2016, Foto N. Afrati, Jacek Sroka, and Jan Hidders

(Eds.). ACM, 2. doi:10.1145/2926534.2926544

[37] Scott T. Leutenegger and Daniel M. Dias. 1993. A Modeling Study of the TPC-C Benchmark. (1993), 22–31. doi:10.

1145/170035.170042

[38] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden. 2023. DARQ Matter Binds Everything:

Performant and Composable Cloud Programming via Resilient Steps. Proc. ACM Manag. Data 1, 2 (2023), 117:1–117:27.
doi:10.1145/3589262

[39] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden. 2024. Serverless State Management

Systems. In 14th Conference on Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA, January 14-17, 2024.
www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p16-li.pdf

[40] Lightbend. 2025. Akka.io. https://akka.io Accessed on April 07, 2025.

[41] David H. Liu, Amit Levy, Shadi A. Noghabi, and Sebastian Burckhardt. 2023. Doing More with Less: Orchestrating

Serverless Applications without an Orchestrator. In 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023, Boston, MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX

Association, 1505–1519. https://www.usenix.org/conference/nsdi23/presentation/liu-david

[42] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical Deterministic OLTP Database. Proc.
VLDB Endow. 13, 11 (2020), 2047–2060. http://www.vldb.org/pvldb/vol13/p2047-lu.pdf

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1007/3-540-08755-9_9
https://www.usenix.org/conference/atc22/presentation/gu-rong
https://doi.org/10.14778/3329772.3329777
https://www.ietf.org/archive/id/draft-ietf-httpapi-idempotency-key-header-06.txt
https://www.ietf.org/archive/id/draft-ietf-httpapi-idempotency-key-header-06.txt
https://doi.org/10.14778/3007263.3007272
https://doi.org/10.1145/3477132.3483541
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/2948985
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2926534.2926544
https://doi.org/10.1145/170035.170042
https://doi.org/10.1145/170035.170042
https://doi.org/10.1145/3589262
https://www.cidrdb.org/cidr2024/papers/p16-li.pdf
https://akka.io
https://www.usenix.org/conference/nsdi23/presentation/liu-david
http://www.vldb.org/pvldb/vol13/p2047-lu.pdf

Styx: Transactional Stateful Functions on Streaming Dataflows 226:27

[43] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. 2008. Mencius: Building Efficient Replicated State Machine

for WANs. In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, Richard Draves and Robbert van Renesse (Eds.). USENIX Association, 369–384.

http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf

[44] Microsoft. 2025. Azure Logic Apps. https://azure.microsoft.com/en-us/products/logic-apps Accessed on April 07,

2025.

[45] MinIO. 2025. MinIO. https://min.io Accessed on April 07, 2025.

[46] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: a

timely dataflow system. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA,
USA, November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 439–455. doi:10.1145/2517349.2522738

[47] Derek GordonMurray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven Hand.

2011. CIEL: A Universal Execution Engine for Distributed Data-Flow Computing. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011,
David G. Andersen and Sylvia Ratnasamy (Eds.). USENIX Association. https://www.usenix.org/conference/nsdi11/ciel-

universal-execution-engine-distributed-data-flow-computing

[48] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H. Campbell.

2017. Samza: Stateful Scalable Stream Processing at LinkedIn. Proc. VLDB Endow. 10, 12, 1634–1645. doi:10.14778/
3137765.3137770

[49] Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, and Asterios Katsifodimos. 2025. Transactional Cloud

Applications Go with the (Data)Flow. In 15th Annual Conference on Innovative Data Systems Research (CIDR’25). January
19-22, 2025, Amsterdam, The Netherlands.

[50] Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi, and Asterios Katsifodimos. 2024. Stateful

Entities: Object-oriented Cloud Applications as Distributed Dataflows. In Proceedings 27th International Conference on
Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28, Letizia Tanca, Qiong Luo, Giuseppe
Polese, Loredana Caruccio, Xavier Oriol, and Donatella Firmani (Eds.). OpenProceedings.org, 15–21. doi:10.48786/

EDBT.2024.02

[51] Sheng Qi, Xuanzhe Liu, and Xin Jin. 2023. Halfmoon: Log-Optimal Fault-Tolerant Stateful Serverless Computing.

In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz, Germany, October 23-26,
2023, Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann, and Jonathan Mace (Eds.). ACM, 314–330.

doi:10.1145/3600006.3613154

[52] George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Carbone, and Asterios Katsifodimos.

2024. CheckMate: Evaluating Checkpointing Protocols for Streaming Dataflows. In 40th IEEE International Conference
on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024. IEEE, 4030–4043. doi:10.1109/ICDE60146.
2024.00309

[53] Pedro F. Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodimos. 2021. Clonos: Consistent Causal

Recovery for Highly-Available Streaming Dataflows. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,

1637–1650. doi:10.1145/3448016.3457320

[54] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana Mathew, David Bestor, Michael J.

Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith

Suresh, and Matei Zaharia. 2021. DBOS: A DBMS-oriented Operating System. Proc. VLDB Endow. 15, 1 (2021), 21–30.
doi:10.14778/3485450.3485454

[55] Jonas Spenger, Paris Carbone, and Philipp Haller. 2022. Portals: An Extension of Dataflow Streaming for Stateful

Serverless. In Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2022, Auckland, New Zealand, December 8-10, 2022, Christophe
Scholliers and Jeremy Singer (Eds.). ACM, 153–171. doi:10.1145/3563835.3567664

[56] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein,

and Alexey Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 11 (2020), 2438–2452.
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf

[57] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. 2005. The 8 requirements of real-time stream processing.

SIGMOD Rec. 34, 4 (2005), 42–47. doi:10.1145/1107499.1107504
[58] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory DBMS. IEEE Data Eng. Bull. 36, 2 (2013),

21–27. http://sites.computer.org/debull/A13june/VoltDB1.pdf

[59] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haibing Guan, and Haibo Chen. 2022. Ad

Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly. In SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi

(Eds.). ACM, 4–18. doi:10.1145/3514221.3526120

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
https://azure.microsoft.com/en-us/products/logic-apps
https://min.io
https://doi.org/10.1145/2517349.2522738
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.48786/EDBT.2024.02
https://doi.org/10.48786/EDBT.2024.02
https://doi.org/10.1145/3600006.3613154
https://doi.org/10.1109/ICDE60146.2024.00309
https://doi.org/10.1109/ICDE60146.2024.00309
https://doi.org/10.1145/3448016.3457320
https://doi.org/10.14778/3485450.3485454
https://doi.org/10.1145/3563835.3567664
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1145/1107499.1107504
http://sites.computer.org/debull/A13june/VoltDB1.pdf
https://doi.org/10.1145/3514221.3526120

226:28 Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis, & Asterios Katsifodimos

[60] Temporal. 2025. Introducing Temporal .NET – Deterministic Workflow Authoring in .NET. https://temporal.io/blog/

introducing-temporal-dotnet. Accessed: 14-01-2025.

[61] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin: fast

distributed transactions for partitioned database systems. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.

Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 1–12. doi:10.1145/2213836.2213838

[62] Stephanie Wang, Eric Liang, Edward Oakes, Benjamin Hindman, Frank Sifei Luan, Audrey Cheng, and Ion Stoica.

2021. Ownership: A Distributed Futures System for Fine-Grained Tasks. In 18th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2021, April 12-14, 2021, James Mickens and Renata Teixeira (Eds.). USENIX

Association, 671–686. https://www.usenix.org/conference/nsdi21/presentation/cheng

[63] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent Liu. 2020. Fault-tolerant and transac-

tional stateful serverless workflows. In 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association, 1187–1204. https://www.usenix.org/conference/

osdi20/presentation/zhang-haoran

[64] Shuhao Zhang, Juan Soto, and Volker Markl. 2024. A survey on transactional stream processing. VLDB J. 33, 2 (2024),
451–479. doi:10.1007/S00778-023-00814-Z

[65] Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang. 2022. STARRY: Multi-master Transaction Processing on

Semi-leader Architecture. Proc. VLDB Endow. 16, 1 (2022), 77–89. doi:10.14778/3561261.3561268
[66] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. 2022. Lotus: Scalable Multi-Partition Transactions

on Single-Threaded Partitioned Databases. Proc. VLDB Endow. 15, 11 (2022), 2939–2952. doi:10.14778/3551793.3551843

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 226. Publication date: June 2025.

https://temporal.io/blog/introducing-temporal-dotnet
https://temporal.io/blog/introducing-temporal-dotnet
https://doi.org/10.1145/2213836.2213838
https://www.usenix.org/conference/nsdi21/presentation/cheng
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1007/S00778-023-00814-Z
https://doi.org/10.14778/3561261.3561268
https://doi.org/10.14778/3551793.3551843

	Abstract
	1 Introduction
	2 Motivation
	2.1 Dataflows for Stateful Functions
	2.2 Determinism & Transactions
	2.3 Challenges

	3 Programming Model
	3.1 Programming Model Notions

	4 Styx's Architecture
	4.1 Components
	4.2 Transaction Execution Pipeline

	5 Sequencing & Function Execution
	5.1 Transaction Sequencing
	5.2 Call-Graph Discovery
	5.3 Function Execution Acknowledgment

	6 Committing Transactions
	6.1 Lock-free Commit Phase
	6.2 Lock-based Commit Phase
	6.3 Call-Graph Caching
	6.4 Early Commit-Replies via Determinism

	7 Fault Tolerance
	7.1 Incremental Snapshots & Recovery
	7.2 Sequencer Recovery
	7.3 Exactly-Once Processing
	7.4 Exactly-Once Output
	7.5 Addressing Non-Deterministic Functions

	8 Evaluation
	8.1 Setup
	8.2 Latency vs. Throughput
	8.3 Scalability
	8.4 Fault-Tolerance Evaluation

	9 Related Work
	10 Future Work
	11 Conclusion
	Acknowledgments
	References

