
Cascade: From Imperative Code to Stateful Dataflows
Marcus Schutte

Delft University of Technology
m.schutte@tudelft.nl

Lucas Van Mol
Delft University of Technology
l.vanmol@student.tudelft.nl

George Christodoulou
Delft University of Technology
g.c.christodoulou@tudelft.nl

Asterios Katsifodimos
Delft University of Technology

a.katsifodimos@tudelft.nl

ABSTRACT
Executing applications in the cloud is becoming increasingly pop-
ular, primarily developed as microservices containing imperative
code. In our previous work, we have made the case that such ap-
plications can benefit from using dataflow-based runtimes in a
cloud environment. In particular, dataflow-based runtimes offer
significant advantages over imperative code, namely, exactly-once
processing, transparent message handling, and coarse-grained fault
tolerance offered by dataflow systems. However, dataflow program-
ming is not preferred by developers. In this work we bridge this
gap, namely, we present our progress towards creating a suitable
intermediate representation (IR) that can be used to compile stateful
imperative code into dataflows, enabling seamless migration to the
cloud. We then present a compiler pipeline prototype that offers
two key benefits: 𝑖) it enables program optimizations and data par-
allelism, and 𝑖𝑖) it decouples the input program from the target
execution environment, while allowing interesting optimizations.
Preliminary experiments demonstrate that our IR optimizations
speed up the p50 request latency by 267x on average.

ACM Reference Format:
Marcus Schutte, Lucas Van Mol, George Christodoulou, and Asterios Katsi-
fodimos. 2025. Cascade: From Imperative Code to Stateful Dataflows. In The
19th International Symposium on Database Programming Languages (DBPL
’25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3735106.3736537

1 INTRODUCTION
Building scalable and consistent applications remains a challenge,
especially with the multitude of cloud provider offerings and ab-
stractions. While cloud platforms provide mechanisms for scal-
ing workloads, they often lack strong execution guarantees. The
Function-as-a-Service (FaaS) paradigm, e.g., offers flexibility, but
shifts the burden of managing failures, consistency, and error han-
dling to developers, polluting business logic with error-handling
code. Even when correctness is ensured, system performance is
compromised, mainly because of storage and execution disaggrega-
tion. Additionally, cloud providers’ APIs are often proprietary and
lack standardization, hindering migration across providers.

This work is licensed under a Creative Commons Attribution 4.0 International License.
DBPL ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1919-6/2025/06
https://doi.org/10.1145/3735106.3736537

A key challenge in distributed system programming lies in man-
aging state and messaging, particularly in environments with com-
modity hardware prone to failure. Cloud computing solutions often
combine FaaS with external object stores (e.g., Amazon S3) for state
management. This approach introduces significant communication
overhead, as data has to be loaded, modified, and sent over the
network, an inefficiency known as "shipping data to code."

Tomitigate these inefficiencies, solutions such as Cloudburst [39],
Boom [9], Durable Functions [15], and Hilda [44] have emerged, im-
proving cloud programming abstractions by integrating state man-
agement with computation. Actor-based systems like Orleans [14]
provide structured models for distributed programming, but lack
strong guarantees, such as exactly-once processing. Dataflow sys-
tems such as Flink [19] and Spark Streaming [10] express com-
putation as directed graphs, optimizing data-parallel workloads
but largely remaining within the domain of data analytics. Simi-
larly, machine learning frameworks such as TensorFlow [2] use
dataflow-based execution to improve communication and shared
state handling.

Despite these advancements, a programming abstraction for
cloud applications remains elusive. The ideal solution should re-
lieve developers from consistency concerns, facilitate portability
across cloud environments, and optimize execution depending on
the state accesses. A key step toward this goal, is the representa-
tion of communication as a dataflow graph, representing message-
passing between computation steps. Using a dataflow-based execu-
tion model, enables minimization of communication overhead and
efficient execution of stateful applications at scale.
Motivating Example. To illustrate the challenges of distributed
execution, consider a simple checkout process, as shown in Fig-
ure 1. The workflow starts with a request to the User entity, which
retrieves an item from the user’s basket (line 3). Since the Item
entity is a separate component, potentially hosted on a different
machine, fetching its price requires a network call (line 4). Once the
price is obtained, the DiscountService determines any applicable
discounts (line 5).

Traditional systems execute this sequence strictly step-by-step.
As depicted in Figure 1b, each request and response flows through
the User entity, effectively making it an orchestrator. In this design,
correctness is ensured but results in high message complexity.

Our work is built upon the observation that messaging across
services can be optimized by analyzing data flow. Instead of rout-
ing all calls through the User entity, we can allow the Item entity
to communicate directly with DiscountService once the price is
retrieved (Figure 1c). This approach resembles a "choreography",
where components operate autonomously rather than relying on a

https://doi.org/10.1145/3735106.3736537
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3735106.3736537
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735106.3736537&domain=pdf&date_stamp=2025-06-24

DBPL ’25, June 22–27, 2025, Berlin, Germany Schutte et al.

class User:
def checkout_item(self, discount_service: DiscountService):

item: Item = self.get_item_from_basket()
price: float = item.price()
discount: float = discount_service.get_discount(price)
other checkout logic...

(a) Listing of a default implementation

User

Discount

Item

. price ()

pr
ice

. get_dicscount ()

. di
sco
un
t

(b) Orchestration

. price ()

. ge
t

_d
ics
co
un
t ()

(di
sco
un
t ,

pri
ce
)

(c) Choreography

Figure 1: Message complexity of an Orchestration compared
to a Choreography.

central coordinator, usually referred to as call stream or promise
pipeline [33]. As workflows become more complex, these optimiza-
tions yield even greater performance benefits.
Proposed Approach. This work builds on our previous research vi-
sion on dataflow intermediate representation [23, 36]. In this work,
we propose Cascade, a compiler pipeline addressing the challenge
of obtaining an imperative program’s dataflow representation effi-
ciently. We begin by devising a target intermediate representation
(IR) that explicitly encodes the dataflow between computation steps.
The goal of the IR is to capture data dependencies and updates to
the entity state. It acts as an abstraction layer, decoupling applica-
tion logic from the underlying execution environment and enabling
seamless deployment across multiple runtime systems. To ensure
consistency and fault tolerance, we leverage execution frameworks
with strong runtime guarantees, such as Apache Flink [19].

To achieve this IR, we develop a compiler responsible for trans-
lating imperative programs into dataflows seamlessly. We adopt
the same programming model, stateful entities, which enables users
to express cloud applications as Python classes that encapsulate
and persist application state [23].

Finally, the dataflow representation enables several execution
optimizations. Cascade leverages these via two concrete optimiza-
tions, pipelining and parallelizing the dataflow graph. Our approach
enhances program performance in a distributed runtimewhilemain-
taining the original program semantics.

In summary, our contributions are threefold: 𝑖) a dataflow graph
base IR that captures data dependencies and updates to the entity
state, 𝑖𝑖) a compiler that takes a stateful entity source program and
translates this to the IR, 𝑖𝑖𝑖) compiler optimizations that optimize
that IR at the granularity of stateful entities. Our evaluation shows
latency speedups of 13x to 518x in p50 latency and 13x to 57x in
p99 latency.

2 BACKGROUND
In this section, we introduce the core concepts on which we built
our compilation process: control flow graphs (CFGs), the dataflow
model, and intermediate representations (IRs). First, we examine

the structural differences between CFGs and dataflow graphs, high-
lighting how execution order and data dependencies differentiate
each model. Note that dataflow graphs are discussed here in the
context of streaming data systems, not data dependency analysis.
Building on this, we outline an approach for translating a CFG into
a dataflow graph, leveraging data analysis techniques to extract
dependencies between code fragments. However, the main focus of
our work is handling state during transformation. As we detail in
§3, effectively managing state is key to preserving correctness and
ensuring an efficient compilation process.
Intermediate Representation. Compilers use Intermediate Rep-
resentation (IR) as a middle layer to translate source code into
machine-executable code [3, 22]. IRs act as an abstraction layer,
enabling optimizations, transformations, and code analysis [40].
IRs serve as a machine- and language-independent bridge between
source code and target architectures. Multiple languages can com-
pile into a common IR, which is then translated into different archi-
tectures. A notable example is LLVM IR [46].

Furthermore, IRs are formed to fit the usecase. For instance,
Control Flow Graphs (CFGs) [3] aid control flow optimizations,
while Static Single Assignment (SSA) simplifies data dependency
analysis [45]. Modern compilers often use multiple IRs at different
stages to enhance performance [41].
Optimizations.Compilers can optimize code by identifying Instruction-
Level Parallelism (ILP) and Data-Level Parallelism (DLP) [29]. ILP
exploits the absence of data dependencies and control hazards to
execute multiple instructions in parallel within a processor pipeline.
DLP applies the same operation to multiple data elements, often
by analyzing loop bodies to detect independent iterations. In this
work, we extend these techniques to stateful entities.
Control Flow Graph. A Control Flow Graph (CFG) [3, 7] is a
directed graph where nodes represent basic blocks; code fragments,
that are composed of a sequence of program statements that are
executed sequentially. The edges indicate possible control flow
paths between these blocks, illustrating how program execution
progresses. An edge from block A to block B indicates that B may
execute immediately after A. CFGs are building blocks in compiler
design, program analysis, and software optimization by modeling
loops, branches, and conditional structures. They facilitate static
analysis techniques such as dead code elimination, reachability
analysis, and vulnerability detection. A detailed algorithm for con-
structing a control flow graph can be found in [3].
Dataflow model. The dataflow model structures computation as
a dataflow graph (DFG), where nodes represent operators: inde-
pendent processing units, and edges define data exchange through
message streams. Originally introduced as an alternative program-
ming model for parallel computing [31], the dataflow model [4]
has since been widely adopted in fault-tolerant distributed systems
[1, 19, 38]. Dataflow programming eliminates the need for a pro-
gram counter, as execution is triggered as soon as the required
data becomes available. This enables automatic exploitation of data
parallelism. This model is leveraged for both batch and stream
processing where operators perform either stateful (e.g., joins, ag-
gregates) or stateless (e.g., map, filter) operations. By structuring
computation as a dataflow graph, these systems efficiently manage
concurrency, fault tolerance, and scalability.

Cascade: From Imperative Code to Stateful Dataflows DBPL ’25, June 22–27, 2025, Berlin, Germany

def checkout_item(user: User):
item: Item = user

.get_item_from_basket()
price = item.price()
balance = user.balance()
stock = item.stock()

(a) Stateful Entities

DFG based IR

Optimized IR

01010011010
11001011011
11100011100

Datastream
System Code

(b) Cascade’s Compiler

Figure 2: Compiler design high-level overview. The com-
piler transforms a source program composed of stateful en-
tities (2a) into a DFG. The program statements refering to
the User entity (marked in red in the source program) are
mapped to dataflow nodes belonging to the User operator
(anotated in red in the DFG). Similarly, program statements
refering to the Item entity (marked in green) are mapped
to dataflow nodes belonging to the Item operator (the green
nodes). Cascade’s compiler (2b) optimizes the IR before com-
piling it into specific datastream system code.

From Control Flow to Dataflow. While CFGs emphasize the
execution order of basic blocks, dataflow graphs DFGs highlight the
movement and transformation of data between dataflow operators.
Basic blocks execute program logic when control reaches them; in
contrast, dataflow operators react to incoming data, processing and
potentially accumulating it

The code fragments within a basic block closely resemble the
processing performed by a dataflow operator. The translation pro-
cess begins by mapping code fragments from the CFGs basic blocks
to dataflow operators. Next, a data analysis phase identifies which
data elements are consumed and produced within the statements
of each code fragment. This analysis determines how data flows
between CFG operators and shares similarities with liveness analy-
sis, where target variables and used values are extracted from each
basic block. Finally, the last step involves identifying the data that
must be accumulated by the dataflow operators, which in this con-
text refers to modifications of entity attributes within the program
state. A more detailed overview of the transformation process can
be found in §4.

3 CASCADE’S INTERMEDIATE
REPRESENTATION

Compilers for distributed systems can act as translators, trans-
forming high-level stateful programs into efficient, distributed run-
time environments. Such a transformation is typically facilitated by
an intermediate representation (IR), which serves as an abstraction
layer between the input program and the target system. Such an IR
should ensure that the compiled program remains both expressive
and optimizable for distributed execution.

IR Requirements. In order to define that an IR effectively sup-
ports distributed execution, it needs to fulfill some key requirements
that we detail below. First, the IR must be expressive to allow for
modeling a wide range of data-intensive applications. Second, the
IR should enable optimization for distributed execution, where
resource constraints and communication overhead are primary
concerns. Third, an IR must explicitly capture stateful behavior,
preserving the semantics of the original program even in a dis-
tributed environment. Fourth, since messaging can be expensive
in distributed execution, the IR that we target should explicitly
encode the dataflow between atomically connected code fragments,
allowing the compiler to optimize inter-fragment communication.
Lastly, the optimization framework should be modular and extensi-
ble, enabling future improvements that are independent to the IR
structure.

To meet these requirements, we design our IR as a composition
of two primary components: a set of Dataflow Operators that define
computation and a collection of dataflow graphs that connect them.
These components enable fine-grained control over execution and
communication patterns, forming the foundation of an efficient dis-
tributed runtime. Figure 2 provides an overview of this compilation
process.

In Cascade, the dataflow graph (DFG) defines the execution struc-
ture, defining how events propagate through the system. The DFG
is directed, potentially cyclic, and encodes computation (nodes) and
the flow of execution across Dataflow Operators (edges). The actual
processing is carried out by dataflow operators, which maintain
state across events and execute logic when triggered. The dataflow
determines how events traverse through these dataflow operators,
and ensures correct execution of stateful computations.

To explain in detail the construction of the dataflow graph, we
use the MovieReview service from the DeathStarBench [26] Me-
dia Service workload as an example. This service comprises three
stateless operators (Frontend, Text, UniqeId) and three stateful
operators (ComposeReview, User,MovieId). The dataflow graph
of ComposeReview is depicted in Figure 3. Now we will go through
Figure 3 to describe the fundamental structure of the dataflow graph.
A more detailed discussion on optimizing the dataflow from the
Baseline (Figure 3a) to the Pipelined (Figure 3b) and Parallel (Fig-
ure 3c) versions is provided in §5.
Structure of theDataflowGraph.At the core of Cascade’s dataflow
graph are OpNodes, the nodes representing the execution points.
Each OpNode is linked to a specific Dataflow Operator and method.
For example, the first blue node in the Baseline dataflow (Figure 3a)
corresponds to theUniqueId operator and its upload_uniquemethod.
It is common for an operator to be visited multiple times within a
single dataflow; for instance, in DeathStarBench, ComposeReview
(the red node) is visited four times.

Certain OpNodes have specialized roles. The MovieId node (Fig-
ure 3) is an IfNode. IfNodes are conditional execution points that
evaluate a predicate and route data accordingly. With two outgoing
edges, an IfNode directs execution to either the True or False
branch based on the predicate’s outcome.

The Parallel Dataflow (Figure 3c) demonstrates how calls to
external operators can be parallelized. In this transformation, we

DBPL ’25, June 22–27, 2025, Berlin, Germany Schutte et al.

(a) Baseline (b) Pipelined (c) Parallel
Frontend UniqueId ComposeReview User Text MovieId Collect

Figure 3: Dataflow graphs of the DeathStar benchmark, the baseline (a) and the two optimizaitons: pipelined (b) and parallel (c).
The color of the nodes define to which operator they corespond.

introduce the Collect operator, a stateful component that collects
results from multiple asynchronous inputs.

4 TRANSLATING SOURCE CODE TO IR
A source program composed of stateful entities is translated into
the Cascades intermediate representation, which consists of two
components: a list of dataflow operators and a dataflow graph, as
described in §3. Dataflow operators are constructed from stateful
entities, while the dataflow graph is derived from the program’s
control flow graph.

Creating dataflow operators from stateful entities is relatively
straightforward, as their attributes can be directly extracted. Trans-
lating control flow into dataflow graphs, however, requires addi-
tional effort. While the basic blocks of a CFG closely resemble the
code used to define the dataflow operators, a key difference lies in
how they relate to stateful components: a basic block may reference
multiple stateful entities, whereas each OpNode in the dataflow
graph exclusively belongs to a single stateful operator.

To address this, we split basic blocks that referencemultiple State-
ful Entities. This involves inferring types and identifying when a
class instance is a stateful entity. Additionally, we apply preprocess-
ing steps to simplify code splitting.
From Stateful Entities to Dataflow Operators. Classes anno-
tated with @stateful are recognized as stateful entities and are
automatically registered for compilation. These classes typically
contain both methods and attributes. The compiler translates meth-
ods into dataflow representations, while state updates to attributes
define the data that needs to be accumulated by the dataflow oper-
ators.
Type Inference and Stateful Entity Identification. In the trans-
lation process, it is essential for cascade to understand which at-
tributes include references to other stateful entities. To determine
which entity type a variable belongs to the compiler must (1) infer
its type and (2) check if that type corresponds to a stateful entity.
Type inference requires code restrictions ensuring each variable’s
type is deducible. Cascade maintains a list of registered stateful
entities; once the type is inferred, the check reduces to verifying
the entity’s presence in this list.
Pre-processing. To simplify the splitting of basic blocks, we trans-
form the code into Three-Address Code (TAC) [6]. Next, we refine
the statements to ensure that each statement contains only a single
reference to a stateful entity invocation.
Cascade’s CFG. The CFG used by Cascade is quite similar to a
conventional CFG. However, we tailor the build of the CFG to the

specific needs of our compiler. Cascade’s purpose is to compile
stateful entities into streaming dataflows; hence, we are only in-
terested in the control flow concerning entities. When building a
typical control flow graph, each IfStatement in the AST is mapped
to an IfBlock. However, we choose only to build an IfBlock if the
body or orElse branch of the IfStatement includes a reference to
a stateful entity. The same applies to ForLoop.
Translating the CFG into a Dataflow. This pass splits the basic
blocks into dataflow operators. At this stage, we can safely assume
that each statement only references one stateful entity. The pass it-
erates through the basic block of the CFG, and any time the compiler
encounters a stateful entity, it splits the basic block. The resulting
splits form the nodes of the dataflow graph. The compiler visits the
nodes once again and uses the type inference and stateful entity
identification once more to assign each dataflow node to a dataflow
operator.

5 OPTIMIZATIONS
This section outlines the optimization techniques applied to trans-
form the Intermediate Representation (IR) into a more efficient form.
These optimizations target Instruction-Level Parallelism (ILP) and
Data-Level Parallelism (DLP) at the granularity of stateful entities.
Since messaging incurs significant overhead in distributed execu-
tion, reducing unnecessary communication is a key objective. In
the future, we plan to support Loop-level parallelism, code motion,
liveness analysis, and possibly more optimizations.
Pipelining. The Baseline Dataflow (Figure 3a) illustrates how the
Frontend operator orchestrates interactions between components,
repeatedly returning control to itself after each call, introducing
redundant calls and overhead. The pipelined version of the dataflow
(Figure 3b) eliminates these calls. Additionally, the pipelined version
removes the Text operator, as its upload_text method is only re-
sponsible for invoking ComposeReview. Therefore, we can directly
call the ComposeReview operator:

class Text():
@staticmethod
def upload_text(review: ComposeReview, text: str):

review.upload_text(text)

In essence, pipelining turns an orchestration into a choreography;
this optimization is also illustrated in the example presented in
Figure 1 of §1.
Parallelization. For the parallelization process, we can determine
– using data dependency analysis – which calls to remote entities

Cascade: From Imperative Code to Stateful Dataflows DBPL ’25, June 22–27, 2025, Berlin, Germany

can be called independently. If two method calls, do not use com-
mon state, they are considered to be data independent, and can be
invoked in parallel. In our running example, it is possible to invoke
the method invocations to UniqueId, User, MovieId and Text in
parallel (Figure 3c).

Note that we assume to have access to the code of a complete
application and side-effects to external systems do not exist [18].
We plan to work around this assumption in the future.
Loop-level parallelism. Analyzing loop-level parallelism at the
granularity of stateful entities requires analyzing the independence
of loop bodies invoking stateful entities. Consider, for example,
a shopping cart with multiple items in the basket, and we wish
to calculate the total cost. Each Item is an independent stateful
entity containing an item price. Calculating the total could be done
by iterating over the items, fetching the price, and accumulating
the total. Since the loop body is independent, the compiler could
optimize this to one broadcast for all the item prices and then collect
the results.
Code Motion. In certain situations, code motion [21] Could re-
duce inter-entity communication and reduce message complexity.
Consider the following example:

class User:
def checkout_item(self):

item = self.get_item_from_basket()
price = item.price()
balance = self.balance()
stock = item.stock()

The red lines highlight program statements that involve access to
the User entity. The green lines invoke the Item entity. In this case,
the dataflowwould move back and forth between the User Operator
and Item Operator:

To minimize context switching between the User and Item entities,
the statements can be reordered as shown below:

class User:
def checkout_item(self):

item = self.get_item_from_basket()
balance = self.balance()
price = item.price()
stock = item.stock()

Resulting in a dataflow with a reduced number of nodes:

Liveness Analysis. In Cascade, while entity state is kept within
their respective operators, function state travels with Events along
the dataflow graph, and is responsible for saving the values of
local variables. Liveness analysis of these local variables would
minimize the size of the function state by only saving variables that
will be used later. Additionally, this could also enable dead code
elimination, potentially removing entire nodes from the dataflow
graph.

6 FROM IR TO TARGET SYSTEMS
The IR is designed to be execution-target ’agnostic’, allowing exe-
cution on any dataflow system such as Apache Flink [19], Apache
Spark [38], Naiad [34] or Styx [37]. In this work we used PyFlink as

Method Critical Path Length (CPL) # Function Calls
Baseline 12 13
Pipelined 6 7
Parallel 2 8

Table 1: Critical path length and number of function calls
for different optimizations.

the execution target, combining it with Kafka as a message queue
to enable cyclic dataflow processing.

In Flink, every StatefulOperator is compiled into a KeyedProc-
essFunction, enabling keyed state storagewithin the operator. The
state corresponds to an instance of the Python class, allowing one to
retrieve object properties and call methods on the underlying class
instance. On the other hand, stateless operators, are transformed
into ProcessFunctions. An ingress ProcessFunction is used to
ingest and deserialize Events from the message queue and forward
them to the correct operators.

Events directed toward CollectNodes are routed to a FlinkColl-
ectOperator, implemented as a KeyedProcessFunction. This op-
erator is keyed using a combination of the event IDs and the node
IDs of the CollectNode. Events arriving at this node are buffered
in the operator’s state until all expected inputs have been received.
Once all required Events are available, the CollectNode will yield
the collection of Events.

The outputs of all operator datastreams are unioned before being
sent to a Kafka sink. Depending on the event’s progress through
the dataflow, it is either re-ingested into the system for further
processing or placed into a designated ‘results’ message queue,
indicating that it has reached the end of its execution path.

Finally, the result of these operator datastreams are unioned
before heading to a Kafka sink, where they will either be reingested
into the system, or left in a "results" message queue if the event has
reached the end of it’s dataflow.

7 EVALUATION
Benchmark. To evaluate Cascade, we employ the composeReview
workload from the DeathStar benchmark [26]. The workload con-
sists of three stateless operators (Frontend, Text, UniqueId) and
three stateful operators (ComposeReview, User, MovieId). We in-
crease the request frequency from 200 to 1000 req/sec and measure
the p50 and p99 round-trip latency of requests. A single request
corresponds to an entire run-through of the dataflow, and therefore
requires 7-13 individual function calls, as per Table 1. The Text,
UniqueId, User and MovieId serve as intermediate operators as
explained in §3.
Setup. Experiments are executed on a system with two 64-Core
processors with 512 GB RAM, running 64-bit Ubuntu 22.04.5 and
Flink version 1.20.1. Due to limitations in PyFlink’s thread mode, we
run 24 taskmanagers, each with only one task slot, in local Docker
containers. To simulate more realistic distributed conditions, each
taskmanager’s resources were limited to 4 CPUs and 8GB RAM.
They are coordinated by a single jobmanager. A single Kafka node
is used for the message queue, using 32 partitions for each of the
three required topics (ComposeReview, User, MovieId).

DBPL ’25, June 22–27, 2025, Berlin, Germany Schutte et al.

200 300 400 500 600 700 800 900 1000
Requests / sec

102

103

104

105

La
te
nc
y
(m

s)

baseline 50p
pipelined 50p
parallel 50p

baseline 99p
pipelined 99p
parallel 99p

Figure 4: Evaluation of proposed optimizations compared
baseline dataflow graph reporting 50p and 99p latency for
different request frequencies ranging from 200 request/sec
to 1000 req/second.

Results. The results are depicted in Figure 4. Firstly, the pipelined
version benefits from halving the number of function calls (Table 1).
In the p50 latency, the pipelining generates between 3x at 200
req/sec and 121x speedups at 800 req/sec. At 1000 req/sec, we notice
that the speedup drops to 41x. We believe this break in the scaling
behavior is a consequence of the backpressure on the baseline due
to increased time spent on the Kafka queue. We argue that this
behavior derives from performance limitations in PyFlink. The
p99 latency experiences speedups of 1.4x to 41x. At 600 req/sec,
we observe a considerable drop in the p99 latency, indicating a
backpressure point in the pipelined version.

Next, we analyze the effects of Cascade’s parallelization opti-
mization. Introducing the additional Collect operator increases the
total number of function calls by 1. Nonetheless, Cascade reduces
the Critical Path Length (CPL) to 2. Thanks to the short critical
path length, Cascade’s parallelization optimization speeds up the
execution by a further 3.2x to 10x. It proves to be the most effective
at the highest loads of 1000 req/sec. Similarly, in the p99 latency,
Cascade’s parallelization achieves a speed up of up to 11x.

Finally, we discuss the combined benefits of Cascade’s optimiza-
tions. In the p50 latency, Cascade speeds up the latency by 13x to
417x, and the p99 latency by up to 57x. Furthermore, the CPL is
reduced from 12 to 2. In summary, our key takeaways are: 𝑖) mini-
mizing unnecessary function calls in practice reduces overhead and
improves execution efficiency, and 𝑖𝑖) parallelizing computation
effectively shortens the CPL, leading to 417x speedups at scale.

8 RELATEDWORK
Cascade is inspired by the efforts of multiple research communities
to remove the responsibility for correctness from programmers
by providing recovery from failure. Specifically, we build upon
concepts, such as static program analysis, compiler optimizations,
dataflow machines, and fault-tolerant distributed system program-
ming.
IRs and Optimizations in parallel dataflow systems. Optimiz-
ing dataflows in stream processing systems like Flink [19] and Spark
[38] is challenging due to limited program context. Dataflow graphs

often contain user-defined functions (UDFs), which are treated as
black boxes, making it difficult for optimizations to be applied.

To address this, systems like Emma [5] and Mitos [27] lever-
age ANF-based intermediate representations (IRs) and embedded
domain-specific languages (DSLs) in Scala. Similarly, DryadLINQ
[25] introduces LINQ, a DSL that inherently treats data as parallel
collections, enabling optimizations such as join order optimization
and partial aggregation—tasks typically left to the programmer. The
Mitos runtime extends these ideas to optimize iterative algorithms
with techniques like loop pipelining and loop-invariant hoisting.
However, these systems primarily focus on machine learning and
big data analytics workloads. Another approach [30] applies static
code analysis to inspect UDFs, extracting read-write sets to enable
further optimizations. All these techniques operate on high-level
algebraic DSLs, making their contributions orthogonal to Cascade.
Unlike these systems, Cascade does not introduce a high-level alge-
bra. Instead, its optimizations focus on improving the execution of
stateful entities [23].
Compiler optimizations. Compilers were developed to auto-
matically detect parallelism and leverage multi-processor com-
puter architectures [35]. Combinations of data dependency testing
[8, 20, 28] and control-flow analysis [3, 7] were applied, to check
for instruction-level and/or data-level parallelism. Instruction-level
parallelism analyses a sequence of operations to extract hidden
parallelism [29], while data-level parallelism can often be leveraged
when processing large volumes of data. Multiple techniques that
belong to these categories inspired Cascade, such as loop unrolling,
Loop Interchanging, Fission by Name and Loop Fusion, Loop Col-
lapsing.
Programmingmodels.As distributed systems becamemore preva-
lent, new programming languages emerged to simplify their devel-
opment [12]. Languages such as Distributed ML [32], Erlang [11]
and Smalltalk [24] were designed to provide abstractions for fault
tolerance, concurrency, and message passing, making it easier for
programmers to build reliable and efficient distributed applications.

In addition to new programming languages, modern reincar-
nations of the Actor programming model [16, 17, 43] emerged as
an alternative approach to modeling distributed system behavior.
Altough the Cascades programming model is inspired by Orleans
Virtual Actors, we differ from them by applying program anal-
ysis and optimizations at granularity of the Entity. Orleans has
asynchronous constructs and the capabilities to create promises,
however it is up to the programmer to do so in an efficient way.
We draw inspiration from Liskovs Promises [33], who developed a
method for pipelining remote procedure calls into something they
coined call streams.
Compiling imperative programs to dataflow. In the late 1980s
and early 1990s, researchers explored executing imperative pro-
grams on dataflow machines to enable scale-up multi-processor
computing [13, 42]. Their approach employed a fine-grainedmethod,
transforming each operation into a dataflow operator. In contrast,
Cascade translates code at a coarser granularity, mapping one op-
erator per stateful entity and focusing on scaling out distributed
computing.

Cascade: From Imperative Code to Stateful Dataflows DBPL ’25, June 22–27, 2025, Berlin, Germany

9 CONCLUSION AND FUTUREWORK
In this paper, we present Cascade, a compiler pipeline that trans-
forms stateful imperative code into dataflows. Specifically, we demon-
strate how static code analysis and optimization at the level of an
intermediate representation (IR) can enhance performance and sim-
plify cloud application development. Evaluating Cascade on the
DeathStar benchmark Media Service indicates an average p50 and
p99 latency speedup of 267x and 36x, respectively.

Since our research is in progress, multiple challenges remain
open. A main challenge in optimizing dataflow graph execution is
handling side effects regarding state. In order to handle side effects,
a more detailed analysis is needed to determine when functions ex-
hibit indirect dependencies (e.g., modifying the same data structure)
that can impose execution constraints. To address this challenge, we
plan to extend Cascade with side-effect analysis [18]. Additionally,
advanced data dependency analysis will enable further optimiza-
tions, including code motion to reduce inter-entity communication
and liveness analysis to minimize the size of the function state that
travels through the dataflow.

Furthermore, we aim to apply optimizations inspired by compiler
design, which also fit the distributed nature of dataflow runtimes.
The goal is to reduce redundant state accesses, minimize entity
calls, and increase parallelism. For instance, dynamic analysis could
enable branch prediction and speculative execution, preemptively
fetching state to enhance performance.

In addition, our goal is to extend our evaluation with more
workloads and targeted systems. We aim to include additional tar-
get systems to highlight the flexibility of our IR, as well as, sup-
port workloads that include entity queries (e.g., the Hotel Service
in the DeathStar benchmark). For the latter, we will introduce a
QueryNode, enabling stateful entity queries. Additionally, leverag-
ing program information in the IR (e.g., distinguishing read-only
nodes) could enable more optimizations.

Lastly, once we establish a stable IR design, wewill shift our focus
to dynamic system deployments. Currently, we assume round-robin
state distribution. In future research, we aim to investigate state
migration and state placement strategies, leveraging the stateful
dataflow graph to optimize state and execution co-location based
on a cost model.

REFERENCES
[1] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003. Aurora:
a new model and architecture for data stream management. the VLDB Journal 12
(2003), 120–139. https://doi.org/10.1007/s00778-003-0095-z

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[3] Sethi Aho, Ravi Sethi, and D Jeffrey. 1986. Ullman, Compilers: Principles, Tech-
niques, and Tools.

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803.
https://doi.org/10.14778/2824032.2824076

[5] Alexander Alexandrov, Georgi Krastev, and Volker Markl. 2019. Representations
and optimizations for embedded parallel dataflow languages. ACM Transactions
on Database Systems 44 (1 2019). Issue 1. https://doi.org/10.1145/3281629

[6] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 2007. Compilers principles,
techniques & tools. pearson Education.

[7] Frances E. Allen. 1970. Control flow analysis. SIGPLAN Not. 5, 7 (July 1970), 1–19.
https://doi.org/10.1145/390013.808479

[8] John R Allen and Ken Kennedy. 1982. PFC: A program to convert Fortran to
parallel form. (1982).

[9] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-
stein, and Russell Sears. 2010. Boom analytics: exploring data-centric, declarative
programming for the cloud. In Proceedings of the 5th European Conference on Com-
puter Systems (Paris, France) (EuroSys ’10). Association for Computing Machinery,
New York, NY, USA, 223–236. https://doi.org/10.1145/1755913.1755937

[10] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: A Declarative API for Real-Time Applications in Apache Spark. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,
601–613. https://doi.org/10.1145/3183713.3190664

[11] Joe Armstrong. 2013. Programming Erlang: software for a concurrent world. The
Pragmatic Bookshelf.

[12] Henri E Bal, Jennifer G Steiner, and Andrew S Tanenbaum. 1989. Programming
languages for distributed computing systems. ACM Computing Surveys (CSUR)
21, 3 (1989), 261–322.

[13] Micah Beck, Richard Johnson, and Keshav Pingali. 1991. From control flow to
dataflow. J. Parallel and Distrib. Comput. 12, 2 (1991), 118–129. https://doi.org/
10.1016/0743-7315(91)90016-3

[14] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. 2014.
Orleans: Distributed virtual actors for programmability and scalability. MSR-TR.

[15] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S. Meiklejohn. 2021. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–27. https:
//doi.org/10.1145/3485510

[16] Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and
Jorgen Thelin. 2010. Orleans: A framework for cloud computing. URL:
https://www. microsoft. com/en-us/research/wp-content/uploads/2010/11/pldi-11-
submission-public.pdf (2010).

[17] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and
Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
Association for Computing Machinery, New York, NY, USA, Article 16, 14 pages.
https://doi.org/10.1145/2038916.2038932

[18] David Callahan and Ken Kennedy. 1987. Analysis of interprocedural side ef-
fects in a parallel programming environment. In International Conference on
Supercomputing. Springer, 138–171.

[19] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 36, 4 (2015).

[20] Shyh-Ching Chen et al. 1979. Time and parallel processor bounds for Fortran-like
loops. IEEE Trans. Comput. 100, 9 (1979), 660–670.

[21] Cliff Click. 1995. Global code motion/global value numbering. In Proceedings of
the ACM SIGPLAN 1995 conference on Programming language design and imple-
mentation. 246–257.

[22] Cliff Click and Michael Paleczny. 1995. A simple graph-based intermediate
representation. ACM Sigplan Notices 30, 3 (1995), 35–49. https://doi.org/10.1145/
202530.202534

[23] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2021. Distributed transactions on serverless stateful functions. In Proceedings of
the 15th ACM International Conference on Distributed and Event-Based Systems
(Virtual Event, Italy) (DEBS ’21). Association for Computing Machinery, New
York, NY, USA, 31–42. https://doi.org/10.1145/3465480.3466920

[24] L Peter Deutsch and Allan M Schiffman. 1984. Efficient implementation of the
Smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. 297–302.

[25] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, and
Pradeep Kumar Gunda Jon Currey. 2009. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language. Proc.
LSDS-IR 8 (2009).

[26] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)

https://doi.org/10.1007/s00778-003-0095-z
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/3281629
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/1755913.1755937
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1016/0743-7315(91)90016-3
https://doi.org/10.1016/0743-7315(91)90016-3
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/3465480.3466920

DBPL ’25, June 22–27, 2025, Berlin, Germany Schutte et al.

(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 3–18.
https://doi.org/10.1145/3297858.3304013

[27] Gabor E. Gevay, Tilmann Rabl, Sebastian Bres, Lorand Madai-Tahy, Jorge Arnulfo
Quiane-Ruiz, and Volker Markl. 2021. Efficient control flow in dataflow systems:
When ease-of-use meets high performance. In Proceedings - International Confer-
ence on Data Engineering, Vol. 2021-April. IEEE Computer Society, 1428–1439.
https://doi.org/10.1109/ICDE51399.2021.00127

[28] W Ludwell Harrison III. 1986. Compiling lisp for evaluation on a tightly cou-
pled multiprocessor. Technical Report. Illinois Univ., Urbana (USA). Center for
Supercomputing Research and Development.

[29] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[30] Fabian Hueske, Mathias Peters, Matthias J. Sax, Astrid Rheinländer, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the black
boxes in data flow optimization. Proc. VLDB Endow. 5, 11 (July 2012), 1256–1267.
https://doi.org/10.14778/2350229.2350244

[31] Richard M. Karp and Rayamond E. Miller. 1966. Properties of a Model
for Parallel Computations: Determinacy, Termination, Queueing. SIAM
J. Appl. Math. 14, 6 (1966), 1390–1411. https://doi.org/10.1137/0114108
arXiv:https://doi.org/10.1137/0114108

[32] Clifford Dale Krumvieda. 1993. Distributed ML: abstractions for efficient and
fault-tolerant programming. Technical Report. Cornell University.

[33] B. Liskov and L. Shrira. 1988. Promises: linguistic support for efficient asynchro-
nous procedure calls in distributed systems. SIGPLAN Not. 23, 7 (June 1988),
260–267. https://doi.org/10.1145/960116.54016

[34] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439–455. https://doi.org/10.1145/2517349.2522738

[35] David A. Padua and Michael J. Wolfe. 1986. Advanced compiler optimizations
for supercomputers. Commun. ACM 29, 12 (Dec. 1986), 1184–1201. https:
//doi.org/10.1145/7902.7904

[36] Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, and Asterios Kat-
sifodimos. 2025. Transactional Cloud Applications Go with the (Data) Flow. In
15th Annual Conference on Innovative Data Systems Research (CIDR’25). VLDB
Endowment.

[37] Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis,
and Asterios Katsifodimos. 2025. Styx: Transactional Stateful Functions on
Streaming Dataflows. In ACM SIGMOD 2025.

[38] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and
Joshua Zhexue Huang. 2016. Big data analytics on Apache Spark. International
Journal of Data Science and Analytics 1, 3 (2016), 145–164.

[39] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
stateful functions-as-a-service. Proc. VLDB Endow. 13, 12 (July 2020), 2438–2452.
https://doi.org/10.14778/3407790.3407836

[40] James Stanier and Des Watson. 2013. Intermediate representations in imperative
compilers: A survey. ACM Comput. Surv. 45, 3, Article 26 (July 2013), 27 pages.
https://doi.org/10.1145/2480741.2480743

[41] Linda Torczon and Keith Cooper. 2007. Engineering a compiler. Morgan Kaufmann
Publishers Inc.

[42] Arthur Hugo Veen. 1985. The Misconstrued Semicolon: reconciling imperative
languages and dataflow machines. (1985).

[43] Derek Wyatt. 2013. Akka concurrency. Artima Incorporation.
[44] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Johannes Gehrke.

2006. Hilda: A high-level language for data-drivenweb applications. In 22nd
International Conference on Data Engineering (ICDE’06). IEEE, 32–32. https:
//doi.org/10.1109/ICDE.2006.75

[45] Kenneth Zadeck. 2009. The development of static single assignment form. In
Static Single-Assignment Form Seminar.

[46] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.
2012. Formalizing the LLVM intermediate representation for verified pro-
gram transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Philadelphia, PA, USA)
(POPL ’12). Association for Computing Machinery, New York, NY, USA, 427–440.
https://doi.org/10.1145/2103656.2103709

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.14778/2350229.2350244
https://doi.org/10.1137/0114108
https://arxiv.org/abs/https://doi.org/10.1137/0114108
https://doi.org/10.1145/960116.54016
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/7902.7904
https://doi.org/10.1145/7902.7904
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1109/ICDE.2006.75
https://doi.org/10.1109/ICDE.2006.75
https://doi.org/10.1145/2103656.2103709

	Abstract
	1 Introduction
	2 Background
	3 Cascade's Intermediate Representation
	4 Translating Source Code to IR
	5 Optimizations
	6 From IR to target systems
	7 Evaluation
	8 Related work
	9 Conclusion and Future Work
	References

