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Abstract Indexing intervals is a fundamental prob-

lem, finding a wide range of applications, most notably

in temporal and uncertain databases. We propose HINT,

a novel and efficient in-memory index for range selec-

tion queries over interval collections. HINT applies a

hierarchical partitioning approach, which assigns each

interval to at most two partitions per level and has con-

trolled space requirements. We reduce the information

stored at each partition to the absolutely necessary by

dividing the intervals in it, based on whether they begin

inside or before the partition boundaries. In addition,

our index includes storage optimization techniques for

the effective handling of data sparsity and skewness.

We show how HINT can be used to efficiently process

queries based on Allen’s relationships. Experiments on

real and synthetic interval sets of different characteris-

tics show that HINT is typically one order of magnitude

faster than existing interval indexing methods.

1 Introduction

A wide range of applications require managing large

collections of intervals. In temporal databases [38,6],

each tuple has a validity interval, which captures the

period of time that the tuple is valid. In statistics and
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probabilistic databases [14], uncertain values are often

approximated by (confidence or uncertainty) intervals.

In data anonymization [37], attribute values are often

generalized to value ranges. XML data indexing tech-

niques [28] encode label paths as intervals and evalu-

ate path expressions using containment relationships

between the intervals. Several computational geome-

try problems [5] (e.g., windowing) use interval search

as a module. The internal states of window queries in

Stream processors (e.g. Flink/Kafka) can be modeled

and managed as intervals [2]. Event detection systems

[12], represent the time periods where events are active

as time intervals. Matching of event patterns as rela-

tionships between intervals is studied in [24].

We study the classic problem of indexing a large col-

lection S of objects (or records), based on an interval at-

tribute that characterizes each object. Hence, we model

each object s ∈ S as a triple ⟨s.id, s.st, s.end⟩, where
s.id is the object’s identifier (which can be used to ac-

cess any other attribute of the object), and [s.st, s.end]

is the interval associated to s. Our focus is on selection

queries, the most fundamental query type over inter-

vals. Given a query interval q = [q.st, q.end], the ob-

jective is to find the ids of all objects s ∈ S, whose
intervals overlap with q, i.e., they satisfy a general-

ized OVERLAPS (G-OVERLAPS) relationship. In addition,

we study the retrieval of data intervals that satisfy

one of Allen’s interval algebra relationships [1] with q.

Allen’s algebra is used for describing precise relation-

ships between intervals. Modeling the relative positions

of temporal data finds many applications, from manu-

facturing processes and machine faults to business pro-

cesses in general [21]. Selection queries are also known

as time travel or timeslice queries in temporal databases

[36]. Stabbing queries (pure-timeslice queries in tempo-

ral databases) are a special class of selection queries for

which q.st = q.end and the predicate is CONTAINED BY.
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Without loss of generality, we assume that the intervals

and queries are closed at both ends.1

Examples of selection queries include the following:

– on a relation storing employment periods: find all

employees who were employed sometime inside the

[1/1/2021, 2/28/2021] range (G-OVERLAPS); find all

employees who started working for a company at

1/1/2021 and stopped before 2/28/2021 (STARTS).

– on uncertain temperatures: find all stations having

temperature between 6 and 8 degrees with a non-

zero probability (G-OVERLAPS); find all stations hav-

ing temperatures, which are definitely lower/higher

than 25 degrees (BEFORE/AFTER).

For efficient selection queries over collections of in-

tervals, classic data structures for managing intervals,

like the interval tree [18], are typically used. Competi-

tive indexing methods include the timeline index [22],

1D-grids and the period index [4]. All these methods,

which we review in detail in Section 2, have not been

optimized for handling very large collections of inter-

vals in main memory. Hence, there is room for new

data structures, which exploit the characteristics and

capabilities of modern machines that have large enough

memory capacities for the scale of data found in most

applications.

Contributions. In this paper, we propose a novel and

general-purpose Hierarchical index for INTervals (HINT),

suitable for applications that manage large collections

of intervals. HINT defines a hierarchical decomposition

of the domain and assigns each interval in S to at

most two partitions per level. If the domain is relatively

small and discrete, our index can evaluate G-OVERLAPS

queries, requiring no comparisons at all. For the general

case where the domain is large and/or continuous, we

propose a version of HINT, denoted by HINTm, which

limits the number of levels to m+1 and greatly reduces

the space requirements. HINTm conducts comparisons

only for the intervals in the first and last accessed par-

titions at the bottom levels of the index. Some of the

unique and novel characteristics of our index include:

– The intervals in each partition are further divided

into groups, based on whether they begin inside or

before the partition. This division (1) cancels the

need for detecting and eliminating duplicate query

results, (2) reduces the data accesses to the abso-

lutely necessary, and (3) minimizes the space needed

for storing the objects into the partitions.

1Our proposed index can easily be adapted to manage
intervals and/or process selection queries, which are open
at either or both sides, i.e., [o.st, o.end), (o.st, o.end] or
(o.st, o.end).

Table 1: Comparison of interval indices

index query cost space updates

Interval tree [18] medium low slow
Timeline index [22] medium medium slow
1D-grid medium medium fast
Period index [4] medium medium fast
HINT/HINTm (our work) low low fast

– As we theoretically prove, the expected number of

HINTm partitions for which comparisons are neces-

sary is at most four. This guarantees fast retrieval

times, independently of the query extent and posi-

tion.

– The optimized version of our index stores the inter-

vals in all partitions at each level sequentially and

uses a dedicated array with just the ids of intervals

there, as well as links between non-empty partitions

at each level. These optimizations facilitate sequen-

tial access to the query results at each level, while

avoiding accessing unnecessary data.

– We show the necessary additional comparisons and

accesses on HINTm for each predicate in Allen’s al-

gebra. In addition, we show that HINTm without

the storage optimization is directly suitable for pro-

cessing queries using all Allen’s predicates, while

maintaining the excellent performance of HINTm

for G-OVERLAPS queries.

– We show that an index-based nested loops approach

for G-OVERLAPS interval joins that uses HINTm to

index the inner join input outperforms the state-of-

the-art join algorithm when the outer join input is

relatively small.

Table 1 qualitatively compares HINT to previous

work. Our experiments on real and synthetic datasets

show that our index is typically one order of magnitude

faster than the competition. As we explain in Section 2,

existing indices typically require at least one compari-

son for each query result (interval tree, 1D-grid) or may

access and compare more data than necessary (time-

line index, 1D-grid). Further, the 1D-grid, the timeline

and the period index need more space than HINT in

the presence of long intervals in the data due to exces-

sive replication either in their partitions (1D-grid, pe-

riod index) or their checkpoints (timeline index). HINT

gracefully supports updates, since each partition (or di-

vision within a partition) is independent from others.

The construction cost of HINT is also low, as we ver-

ify experimentally. Summing up, HINT is superior in all

aspects to the state-of-the-art and constitutes an impor-

tant contribution, given the fact that selection queries

over large collections of intervals is a fundamental prob-

lem with numerous applications.
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Comparison to our previous work. This article ex-

tends our previous work [13] in three directions. First,

we elaborate on the model for tuning the value of the

parameter m for HINTm. Specifically, we include a new

experiment which confirms the intuition behind our pro-

posed model. Second, we study HINTm performance

for G-OVERLAPS interval joins. Finally, we study the

evaluation of selection queries under all relationships

in Allen’s algebra; [13] considered only the G-OVERLAPS

relationship. We show that HINTm achieves excellent

performance, independently of the query predicate.

Outline. Section 2 reviews related work and presents

in detail the characteristics and weaknesses of existing

interval indices. In Section 3, we present HINT and its

generalized HINTm version, and analyze their complex-

ity. Focusing primarily on the G-OVERLAPS relationship,

optimizations that boost the performance of HINTm

are presented in Section 4, and the first part of our ex-

perimental analysis on real and synthetic data against

the state-of-the-art, is presented in Section 5. Then,

Section 6 discusses necessary changes to HINTm for ef-

ficiently evaluating selection queries under the Allen’s

algebra relationships, and Section 7 follows up with the

second part of our experiments. Finally, Section 8 con-

cludes the paper with a discussion about future work.

2 Related Work

In this section, we present in detail the state-of-the-art

main-memory indices for intervals, to which we exper-

imentally compare HINT in Section 5. In addition, we

briefly discuss other relevant data structures and pre-

vious work on other queries over interval data.

Interval tree. One of the most popular data structures

for intervals is Edelsbrunner’s interval tree [18], a binary

search tree, which takes O(n) space and answers queries

in O(log n+K) time (K is the number of query results).

The tree divides the domain hierarchically by placing

all intervals strictly before (after) the domain’s center

to the left (right) subtree and all intervals that overlap

with the domain’s center at the root. This process is re-

peated recursively for the left and right subtrees using

the centers of the corresponding sub-domains. The in-

tervals assigned to each tree node are sorted in two lists

based on their starting and ending values, respectively.

Interval trees are used to answer selection (i.e., stabbing

and range) queries. For example, Figure 1 shows a set of

14 intervals s1, . . . , s14, which are assigned to 7 interval

tree nodes and a query interval q = [q.st, q, end]. The

domain point c corresponding to the tree’s root is con-

tained in the query interval, hence all intervals in the

root are reported and both the left and right children

domainccL cRcLL cLR cRL cRR

c

cL

cLL cLR

cR

cRL cRR

s1
s2 s3

s4s5
s6

s7

s8
s9

s10
s11

s12
s13 s14

ST ={s1, s2, s3} END ={s2, s3, s1}

ST ={s5, s4}
END ={s5, s4}

ST ={s6, s7}
END ={s7, s6}

ST ={s8, s9}
END ={s9, s8}

ST ={s10, s11}
END ={s10, s11}

ST ={s12, s13}
END ={s12, s13}

ST ={s14}
END ={s14}

q.st q.end

Fig. 1: Example of an interval tree

of the root have to be visited recursively. Since the left

child’s point cL is before q.st, we access the END list

from the end and report results until we find an interval

s for which s.end < q.st; then we access recursively the

right child of cL. This process is repeated symmetrically

for the root’s right child cR. The main drawback of the

interval tree is that we need to perform comparisons for

most of the intervals in the query result. In addition,

updates on the tree can be slow because the lists at

each node should be kept sorted. A relational interval

tree for disk-resident data was proposed in [25].

Timeline index. The timeline index [22] is a general-

purpose access method for temporal (versioned) data,

implemented in SAP-HANA. It keeps the endpoints

of all intervals in an event list, which is a table of

⟨time, id, isStart⟩ triples, where time is the value of

the start or end point of the interval, id is the identi-

fier of the interval, and isStart 1 or 0, depending on

whether time corresponds to the start or end of the

interval, respectively. The event list is sorted primar-

ily by time and secondarily by isStart (descending). In

addition, at certain timestamps, called checkpoints, the

entire set of active object-ids is materialized, that is the

intervals that contain the checkpoint. For each check-

point, there is a link to the first triple in the event list

for which isStart=0 and time is greater than or equal

to the checkpoint, Figure 2(a) shows a set of five in-

tervals s1, . . . , s5 and Figure 2(b) exemplifies a timeline

index for them.

To evaluate a selection query (called time-travel query

in [22]), we first find the largest checkpoint which is

smaller than or equal to q.st (e.g., c2 in Figure 2) and

initialize R as the active interval set at the checkpoint

(e.g., R = {s1, s3, s5}). Then, we scan the event list

from the position pointed by the checkpoint, until the

first triple for which time ≥ q.st, and update R by in-

serting to it intervals corresponding to an isStart = 1

event and deleting the ones corresponding to a isStart =

0 triple (e.g., R becomes {s3, s5}). When we reach q.st,

all intervals in R are guaranteed query results and they
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Timeline Index

c1 c2 c4

s1 s3 s4
s2

s5

q
c3 c5 time id isStart

t1 s3 1

t2 s1 1

t3 s5 1

t4 s1 0

t5 s2 1

... ... ...

t1 t2 t3 t4 t5

checkpt intervals ptr

c1 {s3}

c2 {s1,s3,s5}

... ... ...

t6 t8 t9t7 t10

Event ListCheckpoint Index

(a) set of intervals

Timeline Index

c1 c2 c4

s1 s3 s4
s2

s5

q
c3 c5 time id isStart

t1 s3 1

t2 s1 1

t3 s5 1

t4 s1 0

t5 s2 1

... ... ...

t1 t2 t3 t4 t5

checkpt intervals ptr

c1 {s3}

c2 {s1,s3,s5}

... ... ...

t6 t8 t9t7 t10

Event ListCheckpoint Index

(b) timeline index

Fig. 2: Example of a timeline index

are reported. We continue scanning the event list un-

til the first triple after q.end and we add to the re-

sult the ids of all intervals corresponding to triples with

isStart = 1 (e.g., s2 and s4).

The timeline index accesses more data and performs

more comparisons than necessary, during query evalu-

ation. The index also requires a lot of extra space to

store the active sets of the checkpoints. Finally, ad-hoc

updates are expensive because the event list should be

kept sorted.

1D-grid. A simple and practical data structure for in-

tervals is a 1D-grid, which divides the domain into p

partitions P1, P2, . . . , Pp. The partitions are pairwise

disjoint in terms of their interval span and collectively

cover the entire data domain D. Each interval is as-

signed to all partitions that it overlaps with. Figure 3

shows 5 intervals assigned to p = 4 partitions; s1 goes

to P1 only, while s5 goes to all four partitions. Given a

query q, the results can be obtained by accessing each

partition Pi that overlaps with q. For each Pi which is

contained in q (i.e., q.st ≤ Pi.st ∧ Pi.end ≤ q.end), all

intervals in Pi are guaranteed to overlap with q. For

each Pi, which overlaps with q, but is not contained

in q, we should compare each si ∈ Pi with q to de-

termine whether si is a query result. If the interval

of a query q overlaps with multiple partitions, dupli-

cate results may be produced. An efficient approach for

handling duplicates is the reference value method [17],

which was originally proposed for rectangles but can

be directly applied for 1D intervals. For each interval s

found to overlap with q in a partition Pi, we compute

v = max{s.st, q.st} as the reference value and report s

only if v ∈ [Pi.st, Pi.end]. Since v is unique, s is reported

only in one partition. In Figure 3, interval s4 is reported

only in P2 which contains value max{s4.st, q.st}.

FLAT

P1 P2 P3 P4

s1 s3 s4
s2

s5

qmax(s4.st,q.st) P1 = {s1,s3,s5}
P2 = {s3,s4,s5}
P3 = {s2,s4,s5}
P4 = {s2,s4,s5}

P1 P2 P3 P4

s1 s3 s4
s2

s5

q
P1

O = {s1,s3,s5}, P1
R= ∅

P2
O= {s4}, P2

R = {s3,s5}
P3

O= {s2}, P3
R = {s4,s5}

P3
O= ∅, P3

R = {s2,s4,s5}

Fig. 3: Example of a 1D-gridPeriod Index

P1 P2

s1
s3

s4

s2

s5

Fig. 4: Example of a period index

The 1D-grid has two drawbacks. First, the duplicate

results should be computed and checked before being

eliminated by the reference value. Second, if the collec-

tion contains many long intervals, the index may grow

large in size due to excessive replication which increases

the number of duplicate results to be eliminated. In con-

trast, 1D-grid supports fast updates as the partitions

are stored independently with no need to organize the

intervals in them.

Period index. The period index [4] is a self-adaptive

structure based on domain partitioning, specialized for

G-OVERLAPS and duration queries. The time domain is

split into coarse partitions as in a 1D-grid and then each

partition is divided hierarchically, in order to organize

the intervals assigned to the partition based on their

positions and durations. Figure 4 shows a set of inter-

vals and how they are partitioned in a period index.

There are two primary partitions P1 and P2 and each

of them is divided hierarchically to three levels. Each

level corresponds to a duration length and each interval
is assigned to the level corresponding to its duration.

The top level stores intervals shorter than the length of

a division there, the second level stores longer intervals

but shorter than a division there, and so on. Hence, each

interval is assigned to at most two divisions, except for

intervals which are assigned to the bottom-most level,

which can go to an arbitrary number of divisions. Dur-

ing query evaluation, only the divisions that overlap

with the query interval are accessed; if the query car-

ries a duration predicate, the divisions that are shorter

than the query duration are skipped. For G-OVERLAPS

queries, the period index performs in par with the inter-

val tree and the 1D-grid [4], so we also compare against

this index in Section 5.

Other works. Another classic data structure for inter-

vals is the segment tree [5], a binary search tree, which

has O(n log n) space complexity and answers stabbing

queries in O(log n +K) time. The segment tree is not

designed for G-OVERLAPS queries, for which it requires
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a duplicate result elimination mechanism. In computa-

tional geometry [5], indexing intervals has been studied

as a subproblem within orthogonal 2D range search,

and the worst-case optimal interval tree is typically

used. Indexing intervals has re-gained interest with the

advent of temporal databases [6]. For temporal data, a

number of indices are proposed for secondary memory,

mainly for effective versioning and compression [3,27].

Such indices are tailored for historical versioned data,

while we focus on arbitrary interval sets, queries, and

updates.

Additional research on indexing intervals does not

address selection queries, but other operations such as

temporal aggregation [23,30,22] and interval joins [15,

34,8,7,10,35,11,12,39,16]. The timeline index [22] can

be directly used for temporal aggregation. Piatov et al.

[33] present a collection of plane-sweep algorithms that

extend the timeline index to support aggregation over

fixed intervals, sliding window aggregates, and MIN/

MAX aggregates. The timeline index was later adapted

for interval overlap joins [34,35]. A domain partition-

ing technique for parallel processing of interval joins

was proposed in [8,7,10]. Alternative partitioning tech-

niques for interval joins were proposed in [15,11]. Par-

titioning techniques for interval joins cannot replace

interval indices as they are not designed for selection

queries. Temporal joins considering Allen’s algebra re-

lationships for RDF data were studied in [12]. Multi-

way interval joins in the context of temporal k-clique

enumeration were studied in [39]. Awad et al. [2] define

interval events of the same or different types that are

observed in succession in data streams. Analytical op-

erations based on aggregation or reasoning operations

can be used to formulate composite interval events.

3 HINT

In this section, we propose the Hierarchical index for

INTervals or HINT, which defines a hierarchical do-

main decomposition and assigns each interval to at most

two partitions per level. The primary goal of the in-

dex is to minimize the number of comparisons during

query evaluation, while keeping the space requirements

relatively low, even when there are long intervals in

the collection. HINT applies a smart division of inter-

vals in each partition into two groups, which avoids

the production and handling of duplicate query results

and minimizes the number of accessed intervals. In Sec-

tion 3.1, we present a version of HINT, which avoids

comparisons overall during query evaluation, but it is

not always applicable and may have high space require-

ments. Section 3.2 presents HINTm, the general version

of our index, used for intervals in arbitrary domains.

Table 2: Table of notation

notation description

s.id, s.st, s.end identifier, start, end point of interval s
q = [q.st, q.end] query interval
prefix(k, x) k-bit prefix of integer x
Pℓ,i i-th partition at level ℓ of HINT/HINTm

Pℓ,f (Pℓ,l) first (last) partition at level ℓ overlapping with q

PO
ℓ,i (PR

ℓ,i) sub-partition of Pℓ,i with originals (replicas)

P
Oin
ℓ,i (P

Oaft
ℓ,i ) intervals in PO

ℓ,ii ending inside (after) Pℓ,i

P
Rin
ℓ,i (P

Raft
ℓ,i ) intervals in PR

ℓ,ii ending inside (after) Pℓ,i

Last, Section 3.3 describes our analytical model for set-

ting them parameter and Section 3.4 discusses updates.

Table 2 summarizes the notation used in the paper.

3.1 A comparison-free version of HINT

We first describe a version of HINT, which is appropri-

ate in the case of a discrete and not very large domain

D. Specifically, assume that the domain D wherefrom

the endpoints of intervals in S take value is [0, 2m−
1]. We can define a regular hierarchical decomposition

of the domain into partitions, where at each level ℓ

from 0 to m, there are 2ℓ partitions, denoted by ar-

ray Pℓ,0, . . . , Pℓ,2ℓ−1. Figure 5 illustrates the hierarchical

domain partitioning for m = 4.

Each interval s ∈ S is assigned to the smallest set of

partitions which collectively define s. It is not hard to

show that s will be assigned to at most two partitions

per level. For example, in Figure 5, interval [5, 9] is as-

signed to one partition at level ℓ = 4 and two partitions

at level ℓ = 3. The assignment procedure is described by
Algorithm 1. In a nutshell, for an interval [a, b], starting

from the bottom-most level ℓ, if the last bit of a (resp.

b) is 1 (resp. 0), we assign the interval to partition Pℓ,a

(resp. Pℓ,b) and increase a (resp. decrease b) by one. We

then update a and b by cutting-off their last bits (i.e.,

integer division by 2, or bitwise right-shift). If, at the

next level, a > b holds, indexing [a, b] is done.

Hierarchical partitioning of space

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

011 100

0101

Fig. 5: Hierarchical partitioning and assignment of [5, 9]
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ALGORITHM 1: Assignment of an interval

to partitions

Input : HINT index H, interval s
Output : updated H after indexing s

1 a← s.st; b← s.end; ▷ set masks to s endpoints

2 ℓ← m; ▷ start at the bottom-most level

3 while ℓ ≥ 0 and a ≤ b do
4 if last bit of a is 1 then
5 add s to H.Pℓ,a; ▷ update partition

6 a← a+ 1;

7 if last bit of b is 0 then
8 add s to H.Pℓ,b; ▷ update partition

9 b← b− 1;

10 a← a÷ 2; b← b÷ 2; ▷ cut-off last bit

11 ℓ← ℓ− 1; ▷ repeat for previous level

3.1.1 Query evaluation

A selection query q can be evaluated by finding at each

level the partitions that overlap with q. Specifically,

the partitions that overlap with the query interval q at

level ℓ are partitions Pℓ,prefix(ℓ,q.st) to Pℓ,prefix(ℓ,q.end),

where prefix(k, x) denotes the k-bit prefix of integer

x. We call these partitions relevant to the query q. All

intervals in the relevant partitions are guaranteed to

overlap with q and intervals in none of these partitions

cannot possibly overlap with q. However, since the same

interval s may exist in multiple partitions that overlap

with a query, s may be reported multiple times in the

query result.

We propose a technique that avoids the production

and therefore, the need for elimination of duplicates

and, at the same time, minimizes the number of data

accesses. For this, we divide the intervals in each par-

tition Pℓ,i into two groups: originals PO
ℓ,i and replicas

PR
ℓ,i. Group PO

ℓ,i contains all intervals s ∈ Pℓ,i that

begin at Pℓ,i i.e., prefix(ℓ, s.st) = i. Group PR
ℓ,i con-

tains all intervals s ∈ Pℓ,i that begin before Pℓ,i, i.e.,

prefix(ℓ, s.st) ̸= i.2 Each interval is added as original

in only one partition of HINT. For example, interval

[5, 9] in Figure 5 is added to PO
4,5, P

R
3,3, and PR

3,4.

Given a query q, at each level ℓ of the index, we

report all intervals in the first relevant partition Pℓ,f

(i.e., PO
ℓ,f ∪ PR

ℓ,f ). Then, for every other relevant parti-

tion Pℓ,i, i > f , we report all intervals in PO
ℓ,i and ignore

PR
ℓ,i. This guarantees that no result is missed and no du-

plicates are produced. The reason is that each interval

s will appear as original in just one partition, hence,

2Whether an interval s ∈ Pℓ,i is assigned to PO
ℓ,i or PR

ℓ,i is

determined at insertion time (Algorithm 1). At the first time
Line 5 is executed, s is added as an original and in all other
cases as a replica. If Line 5 is never executed, then s is added
as original the only time that Line 8 is executed.

ALGORITHM 2: Searching HINT

Input : HINT index H, query interval q
Output : set R of all intervals that overlap with q

1 R← ∅;
2 foreach level ℓ in H do
3 p← prefix(ℓ, q.st);

4 R← R∪ {s.id|s ∈ H.PO
ℓ,p ∪H.PR

ℓ,p}
5 while p < prefix(ℓ, q.end) do
6 set p← p+ 1;

7 R← R∪ {s.id|s ∈ H.PO
ℓ,p}

8 return R;

Range queries

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15
0101 1001

010 100

01 10

0 1

0

Fig. 6: Accessed partitions for query [5, 9]

reporting only originals cannot produce any duplicates.

At the same time, all replicas PR
ℓ,f in the first partitions

per level ℓ that overlap with q begin before q and overlap

with q, so they should be reported. On the other hand,

replicas PR
ℓ,i in subsequent relevant partitions (i > f)

contain intervals, which are either originals in a previ-

ous partition Pℓ,j , j < i or replicas in PR
ℓ,f , so, they

can safely be skipped. Algorithm 2 describes the search

algorithm using HINT.

For example, consider the hierarchical partitioning

of Figure 6 and a query interval q = [5, 9]. The binary

representations of q.st and q.end are 0101 and 1001,

respectively. The relevant partitions at each level are

shown in bold (blue) and dashed (red) lines and can be

determined by the corresponding prefixes of 0101 and

1001. At each level ℓ, all intervals (both originals and

replicas) in the first partitions Pℓ,f (bold/blue) are re-

ported while in the subsequent partitions (dashed/red),

only the original intervals are.

Discussion. The version of HINT described above finds

all query results, without conducting any comparisons.

This means that in each partition Pℓ,i, we only have

to keep the ids of the intervals that are assigned to

Pℓ,i and do not have to store/replicate the interval end-

points. In addition, the relevant partitions at each level

are computed by fast bit-shifting operations which are

comparison-free. To use HINT for arbitrary integer do-

mains, we should first normalize all interval endpoints

by subtracting the minimum endpoint, in order to con-

vert them to values in a [0, 2m − 1] domain (the same
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transformation should be applied on the queries). If the

required m is very large, we can index the intervals

based on their m-bit prefixes and support approximate

search on discretized data. Approximate search can also

be applied on intervals in a real-valued domain, after

rescaling and discretization in a similar way.

3.2 HINTm: indexing arbitrary intervals

We now present a generalized version of HINT, denoted

by HINTm, which can be used for intervals in arbitrary

domains. HINTm uses a hierarchical domain partition-

ing with m+1 levels, based on a [0, 2m − 1] domain D;

each raw interval endpoint is mapped to a value in D,

by linear rescaling. The mapping function f(R → D)

is f(x) = ⌊ x−min(x)
max(x)−min(x) · (2m − 1)⌋, where min(x)

and max(x) are the minimum and maximum interval

endpoints in the dataset S, respectively. Each raw inter-

val [s.st, s.end] is mapped to interval [f(s.st), f(s.end)].

The mapped interval is then assigned to at most two

partitions per level in HINTm, using Algorithm 1.

For the ease of presentation, we will assume that

the raw interval endpoints take values in [0, 2m
′ − 1],

where m′ > m, which means that the mapping func-

tion f simply outputs the m most significant bits of its

input. As an example, assume that m = 4 and m′ = 6.

Interval [21, 38] (=[0b010101, 0b100110]) is mapped to

interval [5, 9] (=[0b0101, 0b1001]) and assigned to par-

titions P4,5, P3,3, and P3,4, as shown in Figure 5. So,

in contrast to HINT, the set of partitions whereto an

interval s is assigned in HINTm does not define s, but

the smallest interval in the [0, 2m−1] domain D, which

covers s. As in HINT, at each level ℓ, we divide each

partition Pℓ,i to PO
ℓ,i and PR

ℓ,i, to avoid duplicate results.

3.2.1 Query evaluation using HINTm

For a query q, simply reporting all intervals in the

relevant partitions at each level (as in Algorithm 2)

would produce false positives. Instead, comparisons to

the query endpoints may be required for the first and

the last partition at each level that overlap with q.

Specifically, we can consider each level of HINTm as

a 1D-grid (see Section 2) and go through the partitions

at each level ℓ that overlap with q. For the first parti-

tion Pℓ,f , we verify whether s overlaps with q for each

interval s ∈ PO
ℓ,f and each s ∈ PR

ℓ,f . For the last parti-

tion Pℓ,l, we verify whether s overlaps with q for each

interval s ∈ PO
ℓ,l. For each partition Pℓ,i between Pℓ,f

and Pℓ,l, we report all s ∈ PO
ℓ,i without any compar-

isons. As an example, consider the HINTm index and

the query interval q shown in Figure 7. The identifiers

Range queries

P0,0

P1,0 P1,1

P2,1 P2,2

P3,2 P3,3 P3,4

P4,5 P4,6 P4,7 P4,8 P4,9

q
10010101

010

Fig. 7: Avoiding redundant comparisons in HINTm

of the relevant partitions to q are shown in the figure

(and also some indicative intervals that are assigned to

these partitions). At level m = 4, we have to perform

comparisons for all intervals in the first relevant par-

titions P4,5. In partitions P4,6,. . . ,P4,8, we just report

the originals in them as results, while in partition P4,9

we compare the start points of all originals with q, be-

fore we can confirm whether they are results or not. We

can simplify the overlap tests at the first and the last

partition of each level ℓ based on the following:

Lemma 1 At every level ℓ, each s ∈ PR
ℓ,f is a query

result iff q.st ≤ s.end. If l > f , each s ∈ PO
ℓ,l is a query

result iff s.st ≤ q.end.

Proof For the first relevant partition Pℓ,f at each level

ℓ, for each replica s ∈ PR
ℓ,f , s.st < q.st, so q.st ≤ s.end

suffices as an overlap test. For the last partition Pℓ,l,

if l > f , for each original s ∈ PO
ℓ,f , q.st < s.st, so

s.st ≤ q.end suffices as an overlap test.

3.2.2 Avoiding redundant comparisons in query

evaluation

One of our most important findings in this study and a

powerful feature of HINTm is that at most levels, it is

not necessary to do comparisons at the first and/or the

last partition. For instance, in the previous example,

we do not have to perform comparisons for partition

P3,4, since any interval assigned to P3,4 should overlap

with P4,8 and the interval spanned by P4,8 is covered

by q. This means that the start point of all intervals in

P3,4 is guaranteed to be before q.end (which is inside

P4,9). In addition, observe that for any relevant parti-

tion which is the last partition at an upper level and

covers P3,4 (i.e., partitions {P2,2, P1,1, P0,0}), we do not

have to conduct the s.st ≤ q.end tests as intervals in

these partitions are guaranteed to start before P4,9. The

lemma below formalizes these observations:

Lemma 2 If the first (resp. last) relevant partition for

a query q at level ℓ (ℓ < m) starts (resp. ends) at the
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same value as the first (resp. last) relevant partition

at level ℓ + 1, then for every first (resp. last) relevant

partition Pv,f (resp. Pv,l) at levels v ≤ ℓ, each interval

s ∈ Pv,f (resp. s ∈ Pv,l) satisfies s.end ≥ q.st (resp.

s.st ≤ q.end).

Proof Let P.st (resp. P.end) denote the first (resp. last)

domain value of partition P . Consider the first rele-

vant partition Pℓ,f at level ℓ and assume that Pℓ,f .st =

Pℓ+1,f .st. Then, for every interval s ∈ Pℓ,f , s.end ≥
Pℓ+1,f .end, otherwise s would have been allocated to

Pℓ+1,f instead of Pℓ,f . Further, Pℓ+1,f .end ≥ q.st, since

Pℓ+1,f is the first partition at level ℓ + 1 which over-

laps with q. Hence, s.end ≥ q.st. Moreover, for every

interval s ∈ Pv,f with v < ℓ, s.end ≥ Pℓ+1,f .end holds,

as interval Pv,f covers interval Pℓ,f ; so, we also have

s.end ≥ q.st. Symmetrically, we prove that if Pℓ,l.end =

Pℓ+1,l.end, then for each s ∈ Pv,l, v ≤ ℓ, s.st ≤ q.end.

We next focus on how to rapidly check the condition

of Lemma 2. Essentially, if the last bit of the offset f

(resp. l) of the first (resp. last) partition Pℓ,f (resp. Pℓ,l)

relevant to the query at level ℓ is 0 (resp. 1), then the

first (resp. last) partition at level ℓ−1 above satisfies the

condition. For example, in Figure 7, consider the last

relevant partition P4,9 at level 4. The last bit of l = 9

is 1; so, the last partition P3,4 at level 3 satisfies the

condition and we do not have to perform comparisons

in the last partitions at level 3 and above.

Algorithm 3 is a pseudocode for the search algo-

rithm on HINTm. The algorithm accesses all levels of

the index, bottom-up. It uses two auxiliary flag vari-

ables compfirst and complast to mark whether it is

necessary to perform comparisons at the current level

(and all levels above it) at the first and the last par-

tition, respectively, according to the discussion in the

previous paragraph. At each level ℓ, we find the offsets

of the relevant partitions to the query, based on the ℓ-

prefixes of q.st and q.end (Line 4). For the first position

f = prefix(q, st), the partitions holding originals and

replicas PO
ℓ,f and PR

ℓ,f are accessed. The algorithm first

checks whether f = l, i.e., the first and the last parti-

tions coincide. In this case, if compfirst and complast

are set, then we perform all comparisons in PO
ℓ,f and

apply the first observation in Lemma 1 to PR
ℓ,f . Else, if

only complast is set, we can safely skip the q.st ≤ s.end

comparisons; if only compfist is set, regardless whether

f = l, we just perform q.st ≤ s.end comparisons to both

originals and replicas to the first partition. Finally, if

neither compfirst nor complast are set, we just report

all intervals in the first partition as results. If we are at

the last partition Pℓ,l and l > f (Line 17) then we just

examine PO
ℓ,l and apply just the s.st ≤ q.end test for

each interval there, according to Lemma 1. Finally, for

ALGORITHM 3: Searching HINTm

Input : HINTm index H, query interval q
Output : set R of intervals that overlap with q

1 compfirst← TRUE; complast← TRUE;
2 R← ∅;
3 for ℓ = m to 0 do ▷ bottom-up

4 f ← prefix(ℓ, q.st); l← prefix(ℓ, q.end);
5 for i = f to l do
6 if i = f then ▷ first overlapping

partition

7 if i = l and compfirst and complast
then

8 R← R∪ {s.id|s ∈ H.PO
ℓ,i, q.st ≤

s.end ∧ s.st ≤ q.end};
9 R← R∪ {s.id|s ∈ H.PR

ℓ,i, q.st ≤
s.end};

10 else if i = l and complast then
11 R← R∪ {s.id|s ∈ H.PO

ℓ,i, s.st ≤
q.end};

12 R← R∪ {s.id|s ∈ H.PR};
13 else if compfirst then
14 R← R∪ {s.id|s ∈

H.PO
ℓ,i ∪H.PR

ℓ,i, q.st ≤ s.end};
15 else
16 R← ‘R∪ {s.id|s ∈ H.PO

ℓ,i ∪H.PR
ℓ,i};

17 else if i = l and complast then ▷ last

partition, l > f
18 R← R∪ {s.id|s ∈ H.PO

ℓ,i, s.st ≤ q.end};

19 else ▷ in-between or last (l > f), no

comparisons

20 R← R∪ {s.id|s ∈ H.PO
ℓ,i};

21 if f mod 2 = 0 then ▷ last bit of f is 0

22 compfirst← FALSE;

23 if l mod 2 = 1 then ▷ last bit of l is 1

24 complast← FALSE;

25 return R;

all partitions in-between the first and the last one, we

simply report all original intervals there.

3.2.3 Complexity Analysis

Let n be the number of intervals in S. Assume that the

domain is [0, 2m
′ − 1], where m′ > m. To analyze the

space complexity of HINTm, we first prove the follow-

ing:

Lemma 3 The total number of intervals assigned at

the lowest level m of HINTm is expected to be n.

Proof Each interval s ∈ S will go to zero, one, or two

partitions at level m, based on the bits of s.st and s.end

at position m (see Algorithm 1); on average, s will go

to one partition.

Using Algorithm 1, when an interval is assigned to

a partition at a level ℓ, the interval is truncated (i.e.,
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shortened) by 2m
′−ℓ. Based on this, we analyze the

space complexity of HINTm as follows.

Theorem 1 Let λ be the average length of intervals in

input collection S. The space complexity of HINTm is

O(n · log2(2log2 λ−m′+m + 1)).

Proof Based on Lemma 3, each s ∈ S will be assigned

on average to one partition at level m and will be trun-

cated by 2m
′−m. Following Algorithm 1, at the next

level m− 1, s is also be expected to be assigned to one

partition (see Lemma 3) and truncated by 2m
′−m+1,

and so on, until the entire interval is truncated (con-

dition a ≤ b is violated at Line 3 of Algorithm 1).

Hence, we are looking for the number of levels whereto

each s will be assigned, or for the smallest k for which

2m
′−m+2m

′−m+1+. . .+2m
′−m+k−1 ≥ λ. Solving the in-

equality gives k ≥ log2(2
log2 λ−m′+m+1) and the space

complexity of HINTm is O(n · k)

For the computational cost of queries in terms of

conducted comparisons, in the worst case, O(n) inter-

vals are assigned to the first relevant partition Pm,f at

levelm and O(n) comparisons are required. To estimate

the expected cost of query evaluation in terms of con-

ducted comparisons, we assume a uniform distribution

of intervals to partitions and random query intervals.

Lemma 4 The expected number of HINTm partitions

for which we have to conduct comparisons is four.

Proof At the last level of the index m, we definitely

have to do comparisons in the first and the last partition

(which are different in the worst case). At level m− 1,

for each of the first and last partitions, we have a 50%

chance to avoid comparisons, due to Lemma 2. Hence,

the expected number of partitions for which we have to

perform comparisons at level m − 1 is 1. Similarly, at

level m − 2 each of the yet active first/last partitions

has a 50% chance to avoid comparisons. Overall, for the

worst-case conditions, where m is large and q is long,

the expected number of partitions, for which we need

to perform comparisons is 2 + 1 + 0.5 + 0.25 + . . . = 4.

Theorem 2 The expected number of comparisons dur-

ing query evaluation over HINTm is O(n/2m).

Proof For each query, we conduct comparisons at least

in the first and the last relevant partitions at level m.

The expected number of intervals, in each of these two

partitions, is O(n/2m), considering Lemma 3 and as-

suming a uniform distribution of the intervals in the

partitions. In addition, due to Lemma 4, the number of

expected additional partitions that require comparisons

is 2 and each of these two partitions is expected to also

hold at most O(n/2m) intervals, by Lemma 3 on the

levels above m and using the truncated intervals after

their assignment to level m (see Algorithm 1). Hence, q

is expected to be compared with O(n/2m) intervals in

total and the cost of each such comparison is O(1).

3.3 Setting m

As shown in Section 3.2.3, the space requirements and

the search performance of HINTm depend on the value

ofm. For large values ofm, the cost of accessing compa-

rison-free results will dominate the computational cost

of comparisons. We conduct an analytical study for esti-

mating mopt: the smallest value of m, which is expected

to result in a HINTm of search performance close to the

best possible, while achieving the lowest possible space

requirements. Our study uses simple statistics namely,

the number of intervals n = |S|, the mean length λs of

data intervals and the mean length λq of query inter-

vals. We assume that the endpoints and the lengths of

intervals and queries are uniformly distributed.

The overall cost of query evaluation consists of (1)

the cost for determining the relevant partitions per level,

denoted by Cp, (2) the cost of conducting comparisons

between data intervals and the query, denoted by Ccmp,

and (3) the cost of accessing query results in the parti-

tions for which we do not have to conduct comparisons,

denoted by Cacc. Cost Cp is negligible, as the partitions

are determined by a small number m of bit-shifting op-

erations. To estimate Ccmp, we need to estimate the

number of intervals in the partitions whereat we need

to conduct comparisons and multiply this by the ex-

pected cost βcmp per comparison. To estimate Cacc, we

need to estimate the number of intervals in the corre-

sponding partitions and multiply this by the expected

cost βacc of (sequentially) accessing and reporting one

interval. βcmp and βacc are machine-dependent and can

easily be estimated by experimentation.

According to Algorithm 3, unless λq is smaller than

the length of a partition at level m, there will be two

partitions that require comparisons at level m, one par-

tition at level m− 1, etc. with the expected number of

partitions being at most four (see Lemma 4). Hence, we

can assume that Ccmp is practically dominated by the

cost of processing two partitions at the lowest level m.

As each partition at level m is expected to have n/2m

intervals (see Lemma 3), we have Ccmp = βcmp · n/2m.

Then, the number of accessed intervals for which we

expect to apply no comparisons is |Q|−2 ·n/2m, where

|Q| is the total number of expected query results. Under

this, we have Cacc = βacc · (|Q|−2 ·n/2m). We can esti-

mate |Q| using the selectivity analysis for (multidimen-

sional) intervals and queries in [32] as |Q| = n · λs+λq

Λ ,
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where Λ is the length of the entire domain with all in-

tervals in S (i.e., Λ = max∀s∈S s.end−min∀s∈S s.st).

With Ccmp and Cacc, we now discuss how to esti-

mate mopt. First, we gradually increase m from 1 up to

its max value m′ (determined by Λ), and compute the

expected cost Ccmp + Cacc. For m = m′, HINTm cor-

responds to the comparison-free HINT with the lowest

expected cost. Then, we select as mopt the lowest value

of m for which Ccmp+Cacc converges to the cost of the

m = m′ case.

3.4 Updates

We handle insertions to an existing HINT or HINTm

index by calling Algorithm 1 for each new interval s.

Small adjustments are needed for HINTm to add s to

the originals division at the first partition assignment,

i.e., to PO
ℓ,a or PO

ℓ,b, and to the replicas division for every

other partition, i.e., to PR
ℓ,a or PR

ℓ,b Finally, we handle

deletions using tombstones, similarly to previous stud-

ies [26,31] and recent indexing approaches [19]. Given

an interval s for deletion, we first search the index to lo-

cate all partitions that contain s (both as original and

as replica) and then, replace the id of s by a special

“tombstone” id, which signals the logical deletion.

4 Optimizing HINTm

In this section, we discuss optimization techniques, which

greatly improve the performance of HINTm (and HINT)

in practice. First, we show how to reduce the number of

partitions in HINTm where comparisons are performed

and how to avoid accessing unnecessary data. Next, we

show how to handle very sparse or skewed data at each

level of HINT/HINTm. Another optimization is decou-

pling the storage of the interval ids with the storage of

interval endpoints in each partition. Finally, we revisit

updates under the prism of these optimizations.

4.1 Subdivisions and space decomposition

Recall that, at each level ℓ of HINTm, every parti-

tion Pℓ,i is divided into PO
ℓ,i (holding originals) and PR

ℓ,i

(holding replicas). We propose to further divide each

PO
ℓ,i into POin

ℓ,i and P
Oaft

ℓ,i , so that POin

ℓ,i (resp. P
Oaft

ℓ,i )

holds the intervals from POin

ℓ,i that end inside (resp. af-

ter) partition Pℓ,i. Similarly, each PR
ℓ,i is divided into

PRin

ℓ,i and P
Raft

ℓ,i .

Queries that overlap with multiple partitions.

Consider a query q, which overlaps with a sequence

Subdivisions of HINTm

P2,0 P2,1 P2,2 P2,3

q<latexit sha1_base64="wcPClqce5S6ca0CjGvxYnUWqWCM=">AAACD3icbVC7SgNBFL0bXzG+Vi1tBoNiIWE3iFoGbeyMYB6QrMvsZDYZMvtgZlYIy/6Bjb9iY6GIra2df+Mk2SImHhg4nHMvd87xYs6ksqwfo7C0vLK6VlwvbWxube+Yu3tNGSWC0AaJeCTaHpaUs5A2FFOctmNBceBx2vKG12O/9UiFZFF4r0YxdQLcD5nPCFZacs3juptWT6vZQ3rrpizMsi5JYjQrYl9lmWuWrYo1AVokdk7KkKPumt/dXkSSgIaKcCxlx7Zi5aRYKEY4zUrdRNIYkyHu046mIQ6odNJJngwdaaWH/EjoFyo0UWc3UhxIOQo8PRlgNZDz3lj8z+skyr90dMw4UTQk00N+wpGK0Lgc1GOCEsVHmmAimP4rIgMsMFG6wpIuwZ6PvEia1Yp9XrHvzsq1q7yOIhzAIZyADRdQgxuoQwMIPMELvMG78Wy8Gh/G53S0YOQ7+/AHxtcvmo6caQ==</latexit>

POin
2,2 [ P

Oaft

2,2

<latexit sha1_base64="lDpirtbJHm3AKbcQh410FFelxBA=">AAACEXicbVC7SgNBFJ31GeNr1dJmMAgpJOxGUcugjZ0RzAOSdZmdzCZDZh/M3BXCsr9g46/YWChia2fn3zhJtoiJBwYO59zLnXO8WHAFlvVjLC2vrK6tFzaKm1vbO7vm3n5TRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfZbj0wqHoX3MIqZE5B+yH1OCWjJNct1N62enGYP6a2b8jDLujSJ8axIfNBq6polq2JNgBeJnZMSylF3ze9uL6JJwEKggijVsa0YnJRI4FSwrNhNFIsJHZI+62gakoApJ50kyvCxVnrYj6R+IeCJOruRkkCpUeDpyYDAQM17Y/E/r5OAf+nooHECLKTTQ34iMER4XA/ucckoiJEmhEqu/4rpgEhCQZdY1CXY85EXSbNasc8r9t1ZqXaV11FAh+gIlZGNLlAN3aA6aiCKntALekPvxrPxanwYn9PRJSPfOUB/YHz9AksvnVY=</latexit>

POin
2,3 [ P

Oaft

2,3 {

<latexit sha1_base64="Wxz4rdAdfw9ak5g3+cHEOIyR6aE=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBylJEfVY9OLNCvYD2hg22227dLMJuxuxhPwVLx4U8eof8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3Cyura+kZxs7S1vbO7Z++XWypKJKFNEvFIdgKsKGeCNjXTnHZiSXEYcNoOxtdTv/1IpWKRuNeTmHohHgo2YARrI/l2uZc1/LR26mYP6a2fMpFlvl1xqs4MaJm4OalAjoZvf/X6EUlCKjThWKmu68TaS7HUjHCalXqJojEmYzykXUMFDqny0tntGTo2Sh8NImlKaDRTf0+kOFRqEgamM8R6pBa9qfif10304NIzD8WJpoLMFw0SjnSEpkGgPpOUaD4xBBPJzK2IjLDERJu4SiYEd/HlZdKqVd3zqnt3Vqlf5XEU4RCO4ARcuIA63EADmkDgCZ7hFd6szHqx3q2PeWvBymcO4A+szx/E/JRH</latexit>

}POin
2,1

<latexit sha1_base64="n4FZWHQUp3a8Xp6vVhXs+7BWZag=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBylJEfVY9OKxiv2ANobNdtsu3WzC7kYsIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC2LOlHacb6uwsrq2vlHcLG1t7+zu2fvllooSSWiTRDySnQArypmgTc00p51YUhwGnLaD8fXUbz9SqVgk7vUkpl6Ih4INGMHaSL5d7mUNP62dutlDeuenTGSZb1ecqjMDWiZuTiqQo+HbX71+RJKQCk04VqrrOrH2Uiw1I5xmpV6iaIzJGA9p11CBQ6q8dHZ7ho6N0keDSJoSGs3U3xMpDpWahIHpDLEeqUVvKv7ndRM9uPTMQ3GiqSDzRYOEIx2haRCozyQlmk8MwUQycysiIywx0SaukgnBXXx5mbRqVfe86t6eVepXeRxFOIQjOAEXLqAON9CAJhB4gmd4hTcrs16sd+tj3lqw8pkD+APr8wfJmpRK</latexit>

}PRin
2,1

<latexit sha1_base64="6r+Zab4wbax+Gb14T5w+QnaaDio=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XwICUpoh6LXrxZwX5AW8Nmu2mXbjZhd6OUmJ/ixYMiXv0l3vw3btsctPXBwOO9GWbm+TFnSjvOt7W0vLK6tl7YKG5ube/s2qW9pooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb80dXEbz1QqVgk7vQ4pr0QDwQLGMHaSJ5dqntp9cTN7tMbL8WBzjLPLjsVZwq0SNyclCFH3bO/uv2IJCEVmnCsVMd1Yt1LsdSMcJoVu4miMSYjPKAdQwUOqeql09MzdGSUPgoiaUpoNFV/T6Q4VGoc+qYzxHqo5r2J+J/XSXRw0UuZiBNNBZktChKOdIQmOaA+k5RoPjYEE8nMrYgMscREm7SKJgR3/uVF0qxW3LOKe3tarl3mcRTgAA7hGFw4hxpcQx0aQOARnuEV3qwn68V6tz5mrUtWPrMPf2B9/gDmSZPI</latexit>

P
Oaft

2,1<latexit sha1_base64="orxSLnK4n7t2WURcx/5OtvaSAdg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwICUpoh6LXjxWsR/Q1rDZbtqlm03YnSgl5qd48aCIV3+JN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5tpaWV1bX1gsbxc2t7Z1du7TX1FGiKGvQSESq7RPNBJesARwEa8eKkdAXrOWPriZ+64EpzSN5B+OY9UIykDzglICRPLtU99LqiZvdp7deSgLIMs8uOxVnCrxI3JyUUY66Z391+xFNQiaBCqJ1x3Vi6KVEAaeCZcVuollM6IgMWMdQSUKme+n09AwfGaWPg0iZkoCn6u+JlIRaj0PfdIYEhnrem4j/eZ0EgoteymWcAJN0tihIBIYIT3LAfa4YBTE2hFDFza2YDokiFExaRROCO//yImlWK+5Zxb05Ldcu8zgK6AAdomPkonNUQ9eojhqIokf0jF7Rm/VkvVjv1sesdcnKZ/bRH1ifP+rqk8s=</latexit>

P
Raft

2,1

Fig. 8: Partition subdivisions in HINTm (level ℓ = 2)

of more than one partitions at level ℓ. As already dis-

cussed, if we have to conduct comparisons in the first

such partition Pℓ,f , we should do so for all intervals in

PO
ℓ,f and PR

ℓ,f . By subdividing PO
ℓ,f and PR

ℓ,f , we get the

following lemma:

Lemma 5 If Pℓ,f ̸= Pℓ,l (1) each interval s in POin

ℓ,f ∪
PRin

ℓ,f overlaps with q iff s.end ≥ q.st; and (2) all inter-

vals s in P
Oaft

ℓ,f and P
Raft

ℓ,f surely overlap with q.

Proof Follows directly from the fact that q starts inside

Pℓ,f but ends after Pℓ,f .

Hence, we need just one comparison for each interval

in POin

ℓ,f ∪ PRin

ℓ,f , whereas we can report all intervals

P
Oaft

ℓ,f ∪PRaft

ℓ,f as query results without any comparisons.

As already discussed, for all partitions Pℓ,i between Pℓ,f

and Pℓ,l, we just report intervals in POin

ℓ,i ∪P
Oaft

ℓ,i as re-

sults, without any comparisons, whereas for the last

partition Pℓ,l, we perform one comparison per interval

in POin

ℓ,l ∪ P
Oaft

ℓ,l .

Queries that overlap with a single partition. If

the query q overlaps only one partition Pℓ,f at level ℓ,

we can use following lemma to minimize the necessary

comparisons:

Lemma 6 If Pℓ,f = Pℓ,l then

– each interval s in POin

ℓ,f overlaps with q iff s.st ≤
q.end ∧ q.st ≤ s.end,

– each interval s in P
Oaft

ℓ,f overlaps with q iff s.st ≤
q.end,

– each interval s in PRin

ℓ,f overlaps with q iff s.end ≥
q.st,

– all intervals in P
Raft

ℓ,f overlap with q.

Proof All intervals s ∈ P
Oaft

ℓ,f end after q, so s.st ≤
q.end suffices as an overlap test. All intervals s ∈ PRin

ℓ,f

start before q, so s.st ≤ q.end suffices as an overlap

test. All intervals s ∈ P
Raft

ℓ,f start before and end after

q, so they are guaranteed results.

Overall, the subdivisions help us to minimize the num-

ber of intervals in each partition, for which we have

to apply comparisons. Figure 8 shows the subdivisions

which are accessed by query q at level ℓ = 2 of a HINTm

index. In partition Pℓ,f = P2,1, all four subdivisions are
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Table 3: Necessary data and beneficial sort orders

subdivision beneficial sorting necessary data

P
Oin
ℓ,i by s.st or by s.end s.id, s.st, s.end

P
Oaft
ℓ,i by s.st s.id, s.st

P
Rin
ℓ,i by s.end s.id, s.end

P
Raft
ℓ,i no sorting s.id

accessed, but comparisons are needed only for intervals

in POin
2,1 and PRin

2,1 . In P2,2, only the originals (in POin
2,2

and P
Oaft

2,2 ) are accessed and reported without any com-

parisons. Finally, in Pℓ,l = P2,3, only the originals (in

POin
2,3 and P

Oaft

2,3 ) are accessed and compared to q.

4.1.1 Sorting the intervals in each subdivision

We can keep the intervals in each subdivision sorted, in

order to reduce the number of comparisons for queries

that access them. For example, let us examine the last

partition Pℓ,l that overlaps with a query q at a level ℓ. If

the intervals s in POin

ℓ,l are sorted on their start endpoint

(i.e., s.st), we can simply access and report the intervals

until the first s ∈ POin

ℓ,l , such that s.st > q.end. Or, we

can perform binary search to find the first s ∈ POin

ℓ,l ,

such that s.st > q.end and then scan and report all

intervals before s. Table 3 (second column) summarizes

the sort orders for each of the four subdivisions of a

partition that can be beneficial in query evaluation. For

a subdivision POin

ℓ,i , intervals may have to be compared

based on their start point (if Pℓ,i = Pℓ,f ), or based

on their end point (if Pℓ,i = Pℓ,l), or based on both

points (if Pℓ,i = Pℓ,f = Pℓ,l). Hence, we choose to sort

based on either s.st or s.end to accommodate two of

these three cases. For a subdivision P
Oaft

ℓ,i , intervals may

have to be compared only based on their start point

(if Pℓ,i = Pℓ,l). For a subdivision PRin

ℓ,i , intervals may

have to be compared only based on their end point

(if Pℓ,i = Pℓ,f ). Last, for a subdivision P
Raft

ℓ,i , there is

never any need to compare the intervals, so, no order

provides any benefit.

4.1.2 Storage optimization

So far, we have assumed that each interval s is stored

in the partitions whereto s is assigned as a triplet ⟨s.id,
s.st, s.end⟩. However, if we split the partitions into sub-

divisions, we do not need to keep all information of

the intervals in them. Specifically, for each subdivision

POin

ℓ,i , we may need to use s.st and/or s.end for each

interval s ∈ POin

ℓ,i , while for each subdivision P
Oaft

ℓ,i , we

may need to use s.st for each s ∈ POin

ℓ,i , but we will

never need s.end. From the intervals s of each subdi-

vision PRin

ℓ,i , we may need s.end, but we will never use

s.st. Finally, for each subdivision P
Raft

ℓ,i , we just have to

keep the s.id identifiers of the intervals. Table 3 (third

column) summarizes the data that we need to keep from

each interval in the subdivisions of each partition. Since

each interval s is stored as original just once in the en-

tire index, but as replica in possibly multiple partitions,

space can be saved by storing only the necessary data,

especially if the intervals span multiple partitions. Note

that even when we do not apply the subdivisions, but

just use PO
ℓ,i and PR

ℓ,i (as suggested in Section 3.2), we

do not need to store the start points s.st of all intervals

in PR
ℓ,i, as they are never used in comparisons.

4.2 Handling data skewness and sparsity

Data skewness and sparsity may cause many partitions

to be empty, especially at the lowest levels of HINT

(i.e., large values of ℓ). Recall that a query accesses a

sequence of multiple PO
ℓ,i partitions at each level ℓ. Since

the intervals are physically distributed in the partitions,

this results into the unnecessary accessing of empty par-

titions and may cause cache misses. We propose a stor-

age organization where all PO
ℓ,i divisions at the same

level ℓ are merged into a single table TO
ℓ and an aux-

iliary index is used to find each non-empty division.3

The auxiliary index locates the first non-empty parti-

tion, which is greater than or equal to the ℓ-prefix of q.st

(i.e., via binary search or a binary search tree). From

thereon, the nonempty partitions which overlap with

the query interval are accessed sequentially and distin-

guished with the help of the auxiliary index. Hence, the

contents of the relevant PO
ℓ,i’s to each query are always

accessed sequentially. Figure 9(a) shows an example at

level ℓ = 4 of HINTm. From the total 2ℓ = 16 PO parti-

tions at that level, only 5 are nonempty (shown in grey

at the top of the figure): PO
4,1, P

O
4,5, P

O
4,6, P

O
4,8, P

O
4,13. All

9 intervals in them (sorted by start point) are unified in

a single table TO
4 as shown at the bottom of the figure

(the binary representations of the interval endpoints are

shown). At the moment, ignore the ids column for TO
4

at the right of the figure. The sparse index for TO
4 has

one entry per nonempty partition pointing to the first

interval in it. For the query in the example, the index is

used to find the first nonempty partition PO
4,5, for which

the id is greater than or equal to the 4-bit prefix 0100

of q.st. All relevant non-empty partitions PO
4,5, P

O
4,6, P

O
4,8

are accessed sequentially from TO
4 , until the position of

the first interval of PO
4,13.

3For simplicity, we discuss this organization when a par-
tition Pℓ,i is divided into PO

ℓ,i and PR
ℓ,i; the same idea can

be straightforwardly applied also when the four subdivisions
discussed in Section 4.1 are used.
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Storage optimization 
(sparse 1a representation + columnar 

decomposition)

query

[00010, 01011]
[00011, 01001]
[01010, 01101]
[01100, 11011]
[01100, 11101]
[01101, 10001]
[10001, 11001]
[11010, 11101]
[11011, 11011]

0001 0101 0110 1000 1101

0001
0101
0110
1000
1101

index for 
<latexit sha1_base64="2+o+7w4kyTCdpO5BDAmLZnncFis=">AAACCHicbZC7SgNBFIbPeo3xtmpp4WAQLCTsSkQbIWhjZ4TcIFmX2ckkGTJ7YWZWCMuWNr6KjYUitj6CnW/jZLOFJv4w8POdczhzfi/iTCrL+jYWFpeWV1YLa8X1jc2tbXNntynDWBDaICEPRdvDknIW0IZiitN2JCj2PU5b3uh6Um89UCFZGNTVOKKOjwcB6zOClUaueVB3k0p6n9ym6BJ1PTYgcYRqmp2wjLpmySpbmdC8sXNTglw11/zq9kIS+zRQhGMpO7YVKSfBQjHCaVrsxpJGmIzwgHa0DbBPpZNkh6ToSJMe6odCv0ChjP6eSLAv5dj3dKeP1VDO1ibwv1onVv0LJ2FBFCsakOmifsyRCtEkFdRjghLFx9pgIpj+KyJDLDBROruiDsGePXneNE/L9lnZuquUqld5HAXYh0M4BhvOoQo3UIMGEHiEZ3iFN+PJeDHejY9p64KRz+zBHxmfP2QnmPE=</latexit>

TO
4 =

[
PO

4,i

<latexit sha1_base64="BzRUPY1c1NWhHNvTLBdy3curBHY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FL96s0C9p15JNs21okl2SrFCW/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O4WV1bX1jeJmaWt7Z3evvH/Q0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY30z99hNVmkWyYSYx9QUeShYygo2VHhr99Dx7TO+yfrniVt0Z0DLxclKBHPV++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRde/PK7XrPI4iHMExnIIHl1CDW6hDEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifP7rfkFw=</latexit>

TO
4

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

0001 0101 0110 1000 1101
<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

000 100 110
<latexit sha1_base64="H4tqYvYuQ1+nveGNrF2ZIdG3EO8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdq+ix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5ccePt91iyS27U6BF4mWkBBlq3eJXpxeRRFBpCMdatz03Nn6KlWGE03Ghk2gaYzLEfdq2VGJBtZ9ODx6jI6v0UBgpW9Kgqfp7IsVC65EIbKfAZqDnvYn4n9dOTHjpp0zGiaGSzBaFCUcmQpPvUY8pSgwfWYKJYvZWRAZYYWJsRgUbgjf/8iJpnJa987J7d1aqXmVx5OEADuEYPLiAKtxADepAQMAzvMKbo5wX5935mLXmnGxmH/7A+fwBxOyPuw==</latexit>

PO
3,0

<latexit sha1_base64="MAx/CuT/fvmMdT/9yVYpn+CQOe8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1bnp2Uhk/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukcVr2zsvuXaVUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDywiPvw==</latexit>

PO
3,4

<latexit sha1_base64="tjb9S/HJd6ic01OHODgrcvhoHnA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72PQizcjmIcka5idzCZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uIOZMG9f9dnILi0vLK/nVwtr6xuZWcXunrqNEEVojEY9UM8CaciZpzTDDaTNWFIuA00YwuB77jSeqNIvkvRnG1Be4J1nICDZWeqh20pOj89HjbadYcsvuBGieeBkpQYZqp/jV7kYkEVQawrHWLc+NjZ9iZRjhdFRoJ5rGmAxwj7YslVhQ7aeTg0fowCpdFEbKljRoov6eSLHQeigC2ymw6etZbyz+57USE176KZNxYqgk00VhwpGJ0Ph71GWKEsOHlmCimL0VkT5WmBibUcGG4M2+PE/qx2XvrOzenZYqV1kcediDfTgEDy6gAjdQhRoQEPAMr/DmKOfFeXc+pq05J5vZhT9wPn8AzhaPwQ==</latexit>

PO
3,6

01
<latexit sha1_base64="uzlyRf/M9r97HVQzjGQjeoVXeIk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Tdquix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5OR0/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukUSl752X37qxUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDx/iPvQ==</latexit>

PO
2,3

<latexit sha1_base64="NDkr26UNtYC+VeLD2BhOvyvRzBg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qvbRy5k0eb3vFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS987J7Vy3VrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AxOqPuw==</latexit>

PO
2,1

11

query

9
13
52
78
15
3
24
82
7

ids column for 
<latexit sha1_base64="BzRUPY1c1NWhHNvTLBdy3curBHY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FL96s0C9p15JNs21okl2SrFCW/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O4WV1bX1jeJmaWt7Z3evvH/Q0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY30z99hNVmkWyYSYx9QUeShYygo2VHhr99Dx7TO+yfrniVt0Z0DLxclKBHPV++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRde/PK7XrPI4iHMExnIIHl1CDW6hDEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifP7rfkFw=</latexit>

TO
4

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

(a) auxiliary index

Storage optimization 
(sparse 1a representation)

query

[00010, 01011]
[00011, 01001]
[01010, 01101]
[01100, 11011]
[01100, 11101]
[01101, 10001]
[10001, 11001]
[11010, 11101]
[11011, 11011]

0001 0101 0110 1000 1101

0001
0101
0110
1000
1101

index for 
<latexit sha1_base64="2+o+7w4kyTCdpO5BDAmLZnncFis=">AAACCHicbZC7SgNBFIbPeo3xtmpp4WAQLCTsSkQbIWhjZ4TcIFmX2ckkGTJ7YWZWCMuWNr6KjYUitj6CnW/jZLOFJv4w8POdczhzfi/iTCrL+jYWFpeWV1YLa8X1jc2tbXNntynDWBDaICEPRdvDknIW0IZiitN2JCj2PU5b3uh6Um89UCFZGNTVOKKOjwcB6zOClUaueVB3k0p6n9ym6BJ1PTYgcYRqmp2wjLpmySpbmdC8sXNTglw11/zq9kIS+zRQhGMpO7YVKSfBQjHCaVrsxpJGmIzwgHa0DbBPpZNkh6ToSJMe6odCv0ChjP6eSLAv5dj3dKeP1VDO1ibwv1onVv0LJ2FBFCsakOmifsyRCtEkFdRjghLFx9pgIpj+KyJDLDBROruiDsGePXneNE/L9lnZuquUqld5HAXYh0M4BhvOoQo3UIMGEHiEZ3iFN+PJeDHejY9p64KRz+zBHxmfP2QnmPE=</latexit>

TO
4 =

[
PO

4,i

<latexit sha1_base64="BzRUPY1c1NWhHNvTLBdy3curBHY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FL96s0C9p15JNs21okl2SrFCW/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O4WV1bX1jeJmaWt7Z3evvH/Q0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY30z99hNVmkWyYSYx9QUeShYygo2VHhr99Dx7TO+yfrniVt0Z0DLxclKBHPV++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRde/PK7XrPI4iHMExnIIHl1CDW6hDEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifP7rfkFw=</latexit>

TO
4

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

0001 0101 0110 1000 1101
<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

000 100 110
<latexit sha1_base64="H4tqYvYuQ1+nveGNrF2ZIdG3EO8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdq+ix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5ccePt91iyS27U6BF4mWkBBlq3eJXpxeRRFBpCMdatz03Nn6KlWGE03Ghk2gaYzLEfdq2VGJBtZ9ODx6jI6v0UBgpW9Kgqfp7IsVC65EIbKfAZqDnvYn4n9dOTHjpp0zGiaGSzBaFCUcmQpPvUY8pSgwfWYKJYvZWRAZYYWJsRgUbgjf/8iJpnJa987J7d1aqXmVx5OEADuEYPLiAKtxADepAQMAzvMKbo5wX5935mLXmnGxmH/7A+fwBxOyPuw==</latexit>

PO
3,0

<latexit sha1_base64="MAx/CuT/fvmMdT/9yVYpn+CQOe8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1bnp2Uhk/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukcVr2zsvuXaVUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDywiPvw==</latexit>

PO
3,4

<latexit sha1_base64="tjb9S/HJd6ic01OHODgrcvhoHnA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72PQizcjmIcka5idzCZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uIOZMG9f9dnILi0vLK/nVwtr6xuZWcXunrqNEEVojEY9UM8CaciZpzTDDaTNWFIuA00YwuB77jSeqNIvkvRnG1Be4J1nICDZWeqh20pOj89HjbadYcsvuBGieeBkpQYZqp/jV7kYkEVQawrHWLc+NjZ9iZRjhdFRoJ5rGmAxwj7YslVhQ7aeTg0fowCpdFEbKljRoov6eSLHQeigC2ymw6etZbyz+57USE176KZNxYqgk00VhwpGJ0Ph71GWKEsOHlmCimL0VkT5WmBibUcGG4M2+PE/qx2XvrOzenZYqV1kcediDfTgEDy6gAjdQhRoQEPAMr/DmKOfFeXc+pq05J5vZhT9wPn8AzhaPwQ==</latexit>

PO
3,6

01
<latexit sha1_base64="uzlyRf/M9r97HVQzjGQjeoVXeIk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Tdquix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5OR0/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukUSl752X37qxUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDx/iPvQ==</latexit>

PO
2,3

<latexit sha1_base64="NDkr26UNtYC+VeLD2BhOvyvRzBg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qvbRy5k0eb3vFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS987J7Vy3VrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AxOqPuw==</latexit>

PO
2,1

11

query
(b) linking between levels

Fig. 9: Storage and indexing optimizations

Searching for the first partition PO
ℓ,f that overlaps

with q at each level can be quite expensive when nu-

merous nonempty partitions exist. To alleviate this is-

sue, we suggest adding to the auxiliary index, a link

from each partition PO
ℓ,i to the partition PO

ℓ−1,j at the

level above, such that j is the smallest number greater

than or equal to i÷ 2, for which partition PO
ℓ−1,j is not

empty. Hence, instead of performing binary search at

level ℓ− 1, we use the link from the first partition PO
ℓ,f

relevant to the query at level ℓ and (if necessary) ap-

ply a linear search backwards starting from the pointed

partition PO
ℓ−1,j to identify the first non-empty parti-

tion PO
ℓ−1,f that overlaps with q. Figure 9(b) shows an

example, where each nonempty partition at level ℓ is

linked with the first nonempty partition with greater

than or equal prefix at the level ℓ − 1 above. Given

query example q, we use the auxiliary index to find the

first nonempty partition PO
4,5 which overlaps with q and

also sequentially access PO
4,6 and PO

4,8. Then, we follow

the pointer from PO
4,5 to PO

3,4 to find the first nonempty

partition at level 3, which overlaps with q. We repeat

this to get partition PO
2,3 at level 2, which however is

not guaranteed to be the first one overlapping with q,

so we go backwards to PO
2,3.

4.3 Reducing cache misses

At most levels of HINTm, no comparisons are con-

ducted and the only operations are processing the in-

terval ids which qualify the query. In addition, even

for the levels ℓ where comparisons are required, these

are only restricted to the first and the last partitions

PO
ℓ,f and PO

ℓ,l that overlap with q and no comparisons

are needed for the partitions that are in-between. Sum-

ming up, when accessing any (sub-)partition for which

no comparison is required, we do not need any informa-

tion about the intervals, except for their ids. Hence, in

our implementation, for each (sub-)partition, we store

the ids of all intervals in it in a dedicated array (the

ids column) and the interval endpoints (wherever nec-

essary) in a different array.4 If we need the id of an

interval that qualifies a comparison, we can access the

corresponding position of the ids column. This stor-

age organization greatly improves search performance

by reducing the cache misses, because for the intervals

that do not require comparisons, we only access their

ids and not their interval endpoints. This optimization

is orthogonal to and applied in combination with the

strategy in Section 4.2, i.e., we store all PO divisions at

each level ℓ in a single table TO
ℓ , which is decomposed

to a column that stores the ids and another table for

the endpoint data of the intervals. An example of the

ids column is shown in Figure 9(a). If, for a sequence

of partitions at a level, we do not have to perform any

comparisons, we just access the sequence of the interval

ids that are part of the answer, which is implied by the

position of the first such partition (obtained via the

auxiliary index). In this example, all intervals in PO
4,5

and PO
4,6 are guaranteed to be query results without

any comparisons and they can be sequentially accessed

from the ids column without having to access the end-

points of the intervals. The auxiliary index guides the

search by identifying and distinguishing between parti-

tions for which comparisons should be conducted (e.g.,

PO
4,8) and those for which they are not necessary.

4.4 Updates

A version of HINTm that uses all techniques from Sec-

tions 4.1-4.2, is optimized for query operations. Under

this premise, the index cannot efficiently support indi-

vidual updates, i.e., new intervals inserted one-by-one.

Dealing with updates in batches will be a better fit.

This is a common practice for other update-unfriendly

4Similar to the previous section, this storage optimization
can be straightforwardly employed also when a partition is

divided into POin

ℓ,i , P
Oaft

ℓ,i , PRin

ℓ,i , P
Raft

ℓ,i .
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indices, e.g., the inverted index in IR. Yet, for mixed

workloads (i.e., with both queries and updates), we

adopt a hybrid setting where a delta index is maintained

to digest the latest updates as discussed in Section 3.4,5

and a fully optimized HINTm, which is updated period-

ically in batches, holds older data supporting deletions

with tombstones. Both indices are probed when a query

is evaluated.

5 Experimental Analysis

We compare our hierarchical indexing, detailed in Sec-

tions 3 and 4 against the interval tree [18] (code from

[20]), the timeline index [22], the (adaptive) period in-

dex [4], and a uniform 1D-grid. All indices were imple-

mented in C++ and compiled using gcc (v4.8.5) with

-O3. 6 The tests ran on a dual Intel(R) Xeon(R) CPU

E5-2630 v4 clocked at 2.20GHz with 384 GBs of RAM,

running CentOS Linux.

5.1 Data and queries

We used 4 collections of real intervals, which have also

been used in previous works; Table 4 summarizes their

characteristics. BOOKS [8] contains the periods of time

in 2013 when books were lent out by Aarhus libraries

(https://www.odaa.dk). WEBKIT [8,9,15,34] records

the file history in the git repository of theWebkit project

from 2001 to 2016 (https://webkit.org); the intervals in-

dicate the periods during which a file did not change.

TAXIS [10] stores the time periods of taxi trips (pick-

up and drop-off timestamps) from NY City in 2013

(https://www1.nyc.gov/site/tlc/index.page). GREEND

[11,29] records time periods of power usage from house-

holds in Austria and Italy from January 2010 to Octo-

ber 2014. BOOKS and WEBKIT contain around 2M

intervals each, which are quite long on average; TAXIS

and GREEND have over 100M short intervals.

We also generated synthetic collections to simulate

different cases for the lengths and the skewness of the

input intervals. Table 5 shows the construction param-

eters for the synthetic datasets and their default values.

The domain of the datasets ranges from 32M to 512M,

which requires index level parameter m to range from

25 to 29 for a comparison-free HINT (similar to the

real datasets). The cardinality ranges from 10M to 1B.

The lengths of the intervals were generated using the

random.zipf(α) function in the numpy library. They

5Small adjustments are applied for the POin

l,i , P
Oaft

l,i ,

PRin

l,i , P
Raft

l,i subdivisions and the storage optimizations.
6Source code available in https://github.com/pbour/hint.

follow a zipfian distribution according to the p(x) =
x−a

ζ(a) probability density function, where ζ is the Rie-

mann Zeta function. A small value of α results in most

intervals being relatively long, while a large value re-

sults in the great majority of intervals having length

1. The positions of the middle points of the intervals

are generated from a normal distribution centered at

the middle point µ of the domain. Hence, the middle

point of each interval is generated by calling numpy’s

random.normalvariate(µ, σ). The greater the value of

σ the more spread the intervals are in the domain.

On the real datasets, we applied queries uniformly

distributed in the domain. On the synthetic, the query

positions follow the distribution of the data. In both

cases, the extent of the query intervals were fixed to a

percentage of the domain size (default 0.1%). At each

test, we ran 10K random queries, in order to measure

the overall throughput. Measuring query throughput

instead of average time per query makes sense in appli-

cations or services that manage huge volumes of inter-

val data and offer a search interface to billions of users

simultaneously (e.g., public historical databases).

5.2 Optimizing HINT/HINTm

In our first set of experiments, we study the best setting

for our hierarchical indexing. Specifically, we compare

the effectiveness of the two query evaluation approaches

discussed in Section 3.2.1 and investigate the impact of

the optimizations described in Section 4.

5.2.1 Query evaluation approaches on HINTm

We compare the straightforward top-down approach for

evaluating queries on HINTm that uses solely Lemma 1,

against the bottom-up illustrated in Algorithm 3 which

additionally employs Lemma 2. Figure 10 reports the

throughput of each approach on BOOKS and TAXIS,

while varying the number of levels m in the index.

Due to lack of space, we omit the results for WEBKIT

and GREEND that follow exactly the same trend with

BOOKS and TAXIS, respectively. We observe that the

bottom-up approach significantly outperforms top-down

for BOOKS while for TAXIS, this performance gap

is very small. As expected, bottom-up performs at its

best for inputs that contain long intervals which are in-

dexed on high levels of the index, i.e., the intervals in

BOOKS. In contrast, the intervals in TAXIS are very

short and so, indexed at the bottom level of HINTm,

while the majority of the partitions at the higher levels

are empty. As a result, top-down conducts no compar-

isons at higher levels. For the rest of our tests, HINTm

uses the bottom-up approach (i.e., Algorithm 3).

https://github.com/pbour/hint
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Table 4: Characteristics of real datasets

BOOKS WEBKIT TAXIS GREEND

Cardinality 2,312,602 2,347,346 172,668,003 110,115,441
Size [MBs] 27.8 28.2 2072 1321
Domain [sec] 31,507,200 461,829,284 31,768,287 283,356,410
Min duration [sec] 1 1 1 1
Max duration [sec] 31,406,400 461,815,512 2,148,385 59,468,008
Avg. duration [sec] 2,201,320 33,206,300 758 15
Avg. duration [%] 6.98 7.19 0.0024 0.000005

Table 5: Parameters of synthetic datasets

parameter values (defaults in bold)

Domain length 32M, 64M,128M, 256M, 512M
Cardinality 10M, 50M, 100M, 500M, 1B
α (interval length) 1.01, 1.1, 1.2, 1.4, 1.8
σ (interval position) 10K, 100K, 1M, 5M, 10M
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Fig. 10: Optimizing HINTm: query evaluation ap-

proaches
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Fig. 11: Optimizing HINTm: subdivisions and space de-

composition

5.2.2 Subdivisions and space decomposition

We next evaluate the subdivisions and space decomposi-

tion optimizations described in Section 4.1 for HINTm.

Note that these techniques are not applicable to our

comparison-free HINT as the index stores only inter-

val ids. Figure 11 shows the effect of the optimizations

on BOOKS and TAXIS, for different values of m; sim-

ilar trends were observed in WEBKIT and GREEND,

Table 6: Optimizing HINT: impact of the skewness &

sparsity optimization (Section 4.2), default parameters

dataset
throughput [queries/sec] index size [MBs]
original optimized original optimized

BOOKS 12098 36173 3282 273
WEBKIT 947 39000 49439 337
TAXIS 2931 31027 10093 7733

GREEND 648 47038 57667 10131

respectively. The plots include (1) a base version of

HINTm, which employs none of the proposed optimiza-

tions, (2) subs+sort+opt, with all optimizations acti-

vated, (3) subs+sort, which only sorts the subdivisions

(section 4.1.1) and (iv) subs+sopt, which uses only the

storage optimization for the subdivisions (Section 4.1.2).

We observe that the subs+sort+opt version of HINTm

is superior to all three other versions, on all tests. Es-

sentially, the index benefits from the sub+sort setting

only when m is small, i.e., below 15, at the expense

of increasing the index time compared to base. In this

case, the partitions contain a large number of intervals

and therefore, using binary search or scanning until the

first interval that does not overlap the query, will save

on the conducted comparisons. On the other hand, the

subs+sopt optimization significantly reduces the space

requirements of the index. As a result, the version in-

curs a higher cache hit ratio and so, a higher throughput

compared to base is achieved, especially for large values

of m, i.e., higher than 10. The subs+sort+opt version

manages to combine the benefits of both subs+sort and

subs+sopt versions, i.e., high throughput in all cases,

with low space requirements. The effect in the perfor-

mance is more pronounced in BOOKS because of the

long intervals and the high replication ratio. In view of

these results, HINTm employs all optimizations from

Section 4.1 for the rest of our experiments.

5.2.3 Handling data skewness & sparsity and reducing

cache misses

Table 6 tests the effect of the handling data skewness &

sparsity optimization (Section 4.2) on the comparison-

free version of HINT (Section 3.1).7 Observe that the

7The cache misses optimization (Section 4.3) is only ap-
plicable to HINTm.
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Fig. 12: Optimizing HINTm: impact of handling skew-

ness & sparsity and reducing cache misses optimizations

optimization has a great effect on both the through-

put and the size of the index in all four real datasets,

because empty partitions are effectively excluded from

query evaluation and from the indexing process.

Figure 12 shows the effect of either or both of the

data skewness & sparsity (Section 4.2) and the cache

misses optimizations (Section 4.3) on the performance

of HINTm for different values of m. In all cases, the

version of HINTm which uses both optimizations is su-

perior to all other versions. As expected, the skewness &

sparsity optimization helps to reduce the space require-

ments of the index when m is large, because there are

many empty partitions in this case at the bottom levels

of the index. At the same time, the cache misses opti-

mization helps in reducing the number of cache misses

in all cases where no comparisons are needed. Overall,

the optimized version of HINTm converges to its best

performance at a relatively small value of m, where the

space requirements of the index are relatively low, es-

pecially on the BOOKS and WEBKIT datasets which

contain long intervals. For the rest of our experiments,

HINTm employs both optimizations and HINT the data

skewness & sparsity optimization.

5.2.4 Tuning m

After demonstrating the merit of HINTm optimizations,

we now elaborate on how to set the value of m and
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Fig. 13: Setting m: measured costs

on the effectiveness of our analytical model from Sec-

tion 3.3. As we already discussed our model is based

on the intuition that as m increases, the cost of ac-

cessing comparison-free results dominates the computa-

tional cost of the comparisons. Figure 13 confirms our

intuition on BOOKS and TAXIS (the plots for WE-

BKIT and GREEND exhibit exactly the same trend

as BOOKS and TAXIS, respectively). For different val-

ues of m and for 10K queries, we report the overall

time spend for comparisons between data intervals and

query intervals, denoted by Ccmp , and the overall time

spent to output results with no comparisons, denoted

by Cacc, i.e., the time taken for simply accessing data

intervals which are guaranteed query results. We also

include the total execution time, i.e., Ccmp + Cacc.

The plots clearly show the expected behaviour. For

small values of m, the cost of conducting comparisons

dominates the total execution cost, because the par-

titions at the bottom level m of the index have large

extents and numerous intervals. As the value of m in-

creases, the fraction of the results collected from just

accessing the contents of partitions rises, increasing the

Cacc cost. The optimal values mopt (i.e., where the to-

tal execution time is the lowest possible occur after Cacc

exceeds Ccmp. In fact, we notice that increasing m be-

yond mopt roughly eliminates the cost of comparisons

(Ccmp ≈ 0), because the partitions are much shorter

than the query intervals, while the total cost essentially

equals the cost of simply accessing the intervals from

the comparison-free partitions.

To determine mopt, our model in Section 3.3 se-

lects the smallest m value for which the index converges

within 3% to its lowest estimated cost. Table 7 reports,

for each real dataset, mopt (est.) and (2) mopt (exps),

which brings the highest throughput in our tests. Over-

all, our model estimates a value of mopt which is very

close to the experimentally best value of m. Despite a

larger gap for WEBKIT, the measured throughput for

the estimated mopt = 9 is only 5% lower than the best

observed throughput.
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Table 7: Statistics and parameter setting

index parameter BOOKS WEBKIT TAXIS GREEND

Period
#levels 4 4 7 8

#coarse partitions 100 100 100 100
Timeline #checkpoints 6000 6000 8000 8000
1D-grid #partitions 500 300 4000 30000

HINTm

mopt (est.) 9 9 16 16
mopt (exps) 10 12 17 17

rep. factor k (est.) 6.09 8.98 1.98 1
rep. factor k (exps) 5.13 6.07 2.14 1.0013
avg. comp. part. 3.226 3.538 3.856 2.937
no comp. results 99.9% 99.9% 99.8% 99.3%

Table 8: Comparing index size [MBs]

index BOOKS WEBKIT TAXIS GREEND

Interval tree 97 115 3125 2241
Period 210 217 2278 1262

Timeline 4916 5671 4203 2525
1D-grid 949 604 2165 1264
HINT 273 337 7733 10131
HINTm 81 98 2039 1278

Table 9: Comparing index time [sec]

index BOOKS WEBKIT TAXIS GREEND

Interval tree 0.25 0.33 47.2 26.8
Period 1.15 1.35 76.9 46.4

Timeline 12.7 19.2 40.4 15.9
1D-grid 1.26 0.95 4.02 2.24
HINT 1.70 11.8 49.6 36.5
HINTm 0.73 0.53 22.8 8.58

5.2.5 Discussion

Table 7 also shows the replication factor k of the index,

i.e., the average number of partitions in which every

interval is stored, as predicted by our space complex-

ity analysis (see Theorem 1) and as measured exper-

imentally. As expected, the replication factor is high

on BOOKS, WEBKIT due to the large number of long

intervals, and low on TAXIS, GREEND where the in-

tervals are very short and stored at the bottom levels.

Although our analysis uses simple statistics, the predic-

tions are quite accurate.

The next line of the table (avg. comp. part.) shows

the average number of HINTm partitions for which com-

parisons were conducted. Consistently to our analysis

in Section 3.2.3, all numbers are below 4, which means

that the performance of HINTm is very close to the per-

formance of the comparison-free, but space-demanding

HINT. To further elaborate on the number of required

comparisons, we last show the fraction of the results

produced by HINTm without any comparisons. We ob-

serve that in all datasets over 99% of the results are

collected with no comparisons, which further explains

how HINTm is able to match the performance of the

comparison-free HINT.

5.3 Index performance comparison

Next, we compare the optimized versions of HINT and

HINTm against the previous work competitors. We start

with our tests on the real datasets. For HINTm, we set

m to the best value on each dataset, according to Ta-

ble 7. Similarly, we set the number of partitions for 1D-

grid, the number of checkpoints for the timeline index,

and the number of levels and number of coarse parti-

tions for the period index (see Table 7). Table 8 shows

the sizes of each index in memory and Table 9 shows the

construction cost of each index, for the default query ex-

tent 0.1%. Regarding space, HINTm along with the in-

terval tree and the period index have the lowest require-

ments on datasets with long intervals (BOOKS and

WEBKIT) and very similar to 1D-grid in the rest. In

TAXIS and GREEND where the intervals are indexed

mainly at the bottom level, the space requirements of

HINTm are significantly lower than our comparison-free

HINT due to limiting the number of levels. When com-

pared to the raw data (see Table 4), HINTm is 2 to 3

times bigger for BOOKS and WEBKIT (which contain

many long intervals), and 1 time bigger for GREEND

and TAXIS. These ratios are smaller than the replica-

tion ratios k reported in Table 7, thanks to our storage

optimization (cf. Section 4.1.2). Due to its simplicity,

1D-grid has the lowest index time across all datasets.

Nevertheless, HINTm is the runner up in most of the

cases, especially for the biggest inputs, i.e., TAXIS and

GREEND, while in BOOKS and WEBKIT, its index

time is very close to the interval tree.

Figure 14 compares the query throughputs of all in-

dices on queries of various extents (as a percentage of

the domain size). The first set of bars in each plot corre-

sponds to stabbing queries, i.e., queries of 0 extent. We

observe that HINT and HINTm outperform the com-

petition by almost one order of magnitude, across the

board. In fact, only on GREEND the performance for

one of the competitors, i.e., 1D-grid, comes close to the

performance of our hierarchical indexing. Due to the ex-

tremely short intervals in GREEND (see Table 4) the

vast majority of the results are collected from the bot-

tom level of HINT/HINTm, which essentially resembles

the evaluation process in 1D-grid. Nevertheless, our in-

dices are even in this case faster as they require no

duplicate elimination.

HINTm is the best index overall, as it achieves the

performance of HINT, requiring less space, confirming

the findings of our analysis in Section 3.2.3. As shown

in Table 8, HINT always has higher space requirements

than HINTm; even up to an order of magnitude higher

in case of GREEND. What is more, since HINTm offers

the option to control the occupied space in memory by



HINT: A Hierarchical Interval Index for Allen Relationships 17

Interval tree Period index Timeline index 1D-grid

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t 
[q

u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amgHINT

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t 
[q

u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg

HINTm

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t 
[q

u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg

BOOKS WEBKIT TAXIS GREEND

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t 

[q
u
er

ie
s/

se
c]

query extent [%]

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t 

[q
u
er

ie
s/

se
c]

query extent [%]

10
1

10
2

10
3

10
4

10
5

10
6

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t 

[q
u
er

ie
s/

se
c]

query extent [%]

10
1

10
2

10
3

10
4

10
5

10
6

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t 

[q
u
er

ie
s/

se
c]

query extent [%]

Fig. 14: Comparing throughputs, real datasets
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Fig. 15: Comparing throughputs, synthetic datasets

appropriately setting the m parameter, it can handle

scenarios with space limitations. HINT is marginally

better than HINTm only on datasets with short in-

tervals (TAXIS and GREEND) and only for selective

queries. In these cases, the intervals are stored at the

lowest levels of the hierarchy where HINTm typically

needs to conduct comparisons to identify results, but

HINT applies comparison-free retrieval.

The next set of tests are on synthetic datasets. In

each test, we fix all but one parameters (domain size,

cardinality, α, σ, query extent) to their default val-
ues and varied one (see Table 5). The value of m for

HINTm, the number of partitions for 1D-grid, the num-

ber of checkpoints for the timeline index and the num-

ber of levels/coarse partitions for the period index are

set to their best values on each dataset. The results,

shown in Figure 15, follow a similar trend to the tests

on the real datasets. HINT and HINTm are always sig-

nificantly faster than the competition, . Different to the

real datasets, 1D-grid is steadily outperformed by the

other three competitors. Intuitively, the uniform par-

titioning of the domain in 1D-grid cannot cope with

the skewness of the synthetic datasets. As expected the

domain size, the dataset cardinality and the query ex-

tent have a negative impact on the performance of all

indices. Essentially, increasing the domain size under

a fixed query extent, affects the performance similar

to increasing the query extent, i.e., the queries become

longer and less selective, including more results. Fur-

ther, the querying cost grows linearly with the dataset

size since the number of query results are proportional

Table 10: Throughput [operations/sec], total cost [sec]

BOOKS

index
operation

total cost
queries insertions deletions

Interval tree 1,258 5,841 1,142 9.63
Period index 3,088 519,904 765 4.52

1D-grid 3,739 411,540 165 8.68

subs+soptHINTm 14,390 2,405,228 2,201 1.14
HINTm 40,311 3,680,457 5,928 0.41

TAXIS

index
operation

total cost
queries insertions deletions

Interval tree 2,619 61,923 14,318 3.93
Period index 2,695 1,026,423 21,293 3.76

1D-grid 2,572 8,347,273 16,236 3.95

subs+soptHINTm 8,774 4,407,743 71,122 71,122
HINTm 28,596 6,745,622 90,460 0.36

to it. HINTm occupies around 8% more space than the

raw data, because the replication factor k is close to 1.

In contrast, as α grows, the intervals become shorter,

so the query performance improves. Similarly, when in-

creasing σ the intervals are more widespread, meaning

that the queries are expected to retrieve fewer results,

and the query cost drops accordingly.

5.4 Updates

We now test the efficiency of HINTm in updates us-

ing both the update-friendly version of HINTm (Sec-

tion 3.4), denoted by subs+soptHINTm, and the hybrid

setting for the fully-optimized index from Section 4.4,

denoted as HINTm. We index offline the first 90% of
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Fig. 16: G-OVERLAPS based interval joins, real datasets

the intervals for each real dataset in batch and then

execute a mixed workload with 10K queries of 0.1% ex-

tent, 5K insertions of new intervals (randomly selected

from the remaining 10% of the dataset) and 1K random

deletions. Table 10 reports our findings for BOOKS

and TAXIS; the results for WEBKIT and GREEND

follow the same trend. Note that we excluded Time-

line since the index is designed for temporal (versioned)

data where updates only happen as new events are ap-

pended at the end of the event list, and the comparison-

free HINT, for which our tests have already shown a

similar performance to HINTm with higher indexing/

storing costs. Also, all indices handle deletions with

“tombstones”. We observe that both versions of HINTm

outperform the competition by a wide margin. An ex-

ception arises on TAXIS, as the short intervals are in-

serted in only one partition in 1D-grid. The interval tree

has in fact several orders of magnitude slower updates

due to the extra cost of maintaining the partitions in the

tree sorted at all time. Overall, we also observe that the

hybrid HINTm setting is the most efficient index as the

smaller delta subs+soptHINTm handles insertions faster

than the 90% pre-filled subs+soptHINTm.

5.5 Interval Joins

The last experiment in the first part of our analysis

investigates the applicability of HINTm to the evalua-

tion of interval joins. In this operation, given two input

datasets R, S, the objective is to find all pairs of in-

tervals (r, s), r ∈ R, s ∈ S, such that r G-OVERLAPS

with s. The rationale is that if the outer dataset R

is very small compared to the inner dataset S, an in-

dex already available for S can be used to evaluate fast

the join in an index nested loops fashion. Hence, we

show how HINTm constructed for each of the four real

datasets can be used to evaluate joins where the outer

relation is a random sample of the same dataset. As

part of the join process, we sort the outer dataset R in

order to achieve better cache locality between consec-

utive probes to the inner dataset S. As a competitor,

we used the state-of-the-art interval join algorithm [10],

which sorts both join inputs and applies a specialized

sweeping algorithm optFS. Figure 16 shows the results

for various sizes |R| of the outer dataset R. The re-

sults confirm our expectation. For small sizes of |R|,
HINTm is able to outperform the algorithm of [10]. On

the TAXIS dataset, in particular, HINTm loses to [10]

only when |R|/|S| ≥ 50%.

6 Supporting Allen’s Algebra

We now turn our focus to Allen’s algebra for intervals

[1]. Table 11 (first two columns) summarizes the basic

relationships of the algebra, each denoted by q REL s,

where q is the query interval and s, an interval in the

input collection S. Note that the G-OVERLAPS selection

query from the previous sections identifies every inter-

val s non-disjoint to query q, i.e., a combination of all

basic algebra’s relationships besides BEFORE and AFTER.

We study selection queries on Allen’s relationships

under two setups for our hierarchical indexing. We fo-

cus on HINTm, which exhibits similar performance to

the comparison-free HINT but significant lower index-

ing costs, as our experiments showed in Section 5.

6.1 Setup Optimized for G-OVERLAPS

We start off with the HINTm setup from the first part of

our paper (see Table 3), optimized for the G-OVERLAPS

selection. In what follows, we discuss how queries based

on Allen’s relationships can be evaluated without any

structural changes to the index. Table 11 summarizes

the set of intervals reported for each selection query.

Relationship EQUALS. An EQUALS selection determines

all input intervals identical to query q, i.e., with q.end =

s.end and q.st = s.st. To answer such a query, we access

two specific index partitions; the first relevant Pℓ,f at

level ℓ and the last relevant Pℓ′,l, at level ℓ
′. 8 Intuitively,

these two partitions correspond to the first and last par-

tition where HINTm would store the query interval q,

8In the general case, ℓ ̸= ℓ′ holds for levels ℓ and ℓ′.
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Table 11: Supporting Allen’s algebra, setup optimized for G-OVERLAPS relationship (Table 3)

q REL s definition result set

EQUALS
q.st = s.st ∧ if f = l,

{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end = s.end

}
q.end = s.end else

{
s ∈ P

Oaft
ℓ,f : q.st = s.st

}⋂{
s ∈ P

Rin
ℓ′,l : q.end = s.end

}
STARTS

q.st = s.st ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,f : q.st = s.st

}
q.end < s.end else

{
s ∈ P

Oaft
ℓ,f : q.st = s.st

}⋂{⋃
∀ℓ′

{{
s ∈ P

Rin
ℓ′,l : q.end < s.end

}⋃
P

Raft

ℓ′,l

}}

STARTED BY
q.st = s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end > s.end

}
q.end > s.end

else
{
s ∈ P

Oin
ℓ,f : q.st = s.st

}⋃{{
s ∈ P

Oaft
ℓ,f : q.st = s.st

}⋂{⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin
ℓ′,i

}⋃{
s ∈ P

Rin
ℓ′,l : q.end > s.end

}}}}
FINISHES

q.end = s.end ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,l : q.end = s.end ∧ q.st > s.st

}⋃{
s ∈ P

Rin
ℓ,l : q.end = s.end

}
q.st > s.st else

{
s ∈ P

Rin
ℓ,l : q.end = s.end

}⋂{⋃
∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st > s.st
}⋃

P
Raft

ℓ′,f

}}

FINISHED BY
q.end = s.end ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,l : q.end = s.end ∧ q.st < s.st

}
q.st < s.st

else
{
s ∈ P

Oin
ℓ,l : q.end = s.end

}⋃{{
s ∈ P

Rin
ℓ,l : q.end = s.end

}⋂{⋃
∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st < s.st
}⋃{⋃

∀f<i<l P
Oaft

ℓ′,i

}}}}
MEETS q.end = s.st ∀ℓ:

{
s ∈ P

Oin
ℓ,l

⋃
P

Oaft
ℓ,l : q.end = s.st

}
MET BY q.st = s.end ∀ℓ:

{
s ∈ P

Oin
ℓ,f

⋃
P

Rin
ℓ,f : q.st = s.end

}

OVERLAPS
q.st < s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st < s.st ∧ q.end > s.st ∧ q.end < s.end

}⋃
q.end > s.st ∧

{
s ∈ P

Oaft
ℓ,f : q.st < s.st ∧ q.end > s.st

}
q.end < s.end

else
{
s ∈ P

Oin
ℓ,l : q.end > s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,l : q.end > s.st

}⋃{{{
s ∈ P

Rin
ℓ,l : q.end < s.end

}⋃
P

Raft
ℓ,l

}⋂{⋃
∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st < s.st
}⋃{⋃

∀f<i<l P
Oaft

ℓ′,i

}}}}

OVERLAPPED BY
q.st > s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.st < s.end ∧ q.end > s.end

}⋃
q.st < s.end ∧

{
s ∈ P

Rin
ℓ,f : q.st < s.end ∧ q.end > s.end

}
q.end > s.end

else
{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.st < s.end

}⋃{
s ∈ P

Rin
ℓ,f : q.st < s.end

}⋃{{{
s ∈ P

Oaft
ℓ,f : q.st > s.st

}⋃
P

Raft
ℓ,f

}⋂{⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin
ℓ′,i

}⋃{
s ∈ P

Rin
ℓ′,l : q.end > s.end

}}}}

CONTAINS
q.st < s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st < s.st ∧ q.end > s.end

}
q.end > s.end

else
{
s ∈ P

Oin
ℓ,f : q.st < s.st

}⋃{⋃
∀f<i<l P

Oin
ℓ,i

}⋃{
s ∈ P

Oin
ℓ,l : q.end > s.end

}⋃{{
s ∈ P

Oaft
ℓ,f : q.st < s.st

}⋃{⋃
∀f<i<l P

Oaft
ℓ,i

}}⋂{⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin
ℓ′,i

}⋃{
s ∈ P

Rin
ℓ′,l : q.end > s.end

}}}

CONTAINED BY
q.st > s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,f : q.st > s.st

}⋃
q.end < s.end

{
s ∈ P

Rin
ℓ,f : q.end < s.end

}⋃
P

Raft
ℓ,f

else
{{

s ∈ P
Oaft
ℓ,f : q.st > s.st

}⋃
P

Raft
ℓ,f

}⋂{⋃
∀ℓ′

{{
s ∈ P

Rin
ℓ′,l : q.end < s.end

}⋃
P

Raft

ℓ′,l

}}
BEFORE q.end < s.st ∀ℓ:

{
s ∈ P

Oin
ℓ,l

⋃
P

Oaft
ℓ,l : q.end < s.st

}⋃{⋃
∀i>l

{
P

Oin
ℓ,i

⋃
P

Oaft
ℓ,i

}}
AFTER q.st > s.end ∀ℓ:

{
s ∈ P

Oin
ℓ,f

⋃
P

Rin
ℓ,f : q.st > s.end

}⋃{⋃
∀i<f

{
P

Oin
ℓ,i

⋃
P

Rin
ℓ,i

}}

respectively. We then distinguish between two cases. If

q overlaps a single partition, i.e., if f = l, we need

only the intervals that both start and end inside this

partition, i.e., the POin

ℓ,f subdivision. So, we report set{
s ∈ POin

ℓ,f : q.st = s.st ∧ q.end = s.end
}
. Otherwise, if

f ̸= l, we report results among the intervals that start

in the first relevant partition (from P
Oaft

ℓ,f ) and end in

the last (from PRin

ℓ′,l ), i.e., set
{
s ∈ P

Oaft

ℓ,f : q.st = s.st
}⋂

{
s ∈ PRin

ℓ′,l : q.end = s.end
}
. Note that we cannot di-

rectly check q.end = s.end as P
Oaft

ℓ,f stores only s.st

(and s.id).

Relationship STARTS. According to Allen’s algebra, a

STARTS selection query reports all intervals that start

where q does, i.e., with q.st = s.st, but outlive its end,

i.e., with q.end < s.end. By construction, HINTm stores

such intervals as originals in the first relevant parti-

tion. We consider two cases for every index level ℓ. If

f = l, we report each interval in the POin

ℓ,f subdivision

that satisfies both query conditions and each interval

in P
Oaft

ℓ,f that satisfies only q.st = s.st; for the latter

intervals, their s.end is by construction after q.end. So,

we report
{
s ∈ POin

ℓ,f : q.st = s.st ∧ q.end < s.end
}⋃

{
s ∈ P

Oaft

ℓ,f : q.st = s.st
}
. In contrast, if f ̸= l, the re-

sults can only come from the intervals that end after

the first relevant partition at current level ℓ, i.e., from

P
Oaft

ℓ,f . But, as subdivisions P
Oaft

ℓ,f store only s.st ac-

cording to Table 3, we cannot directly check the q.end <

s.end condition. Instead, we rely on the replicas in-

side the last relevant partition at any index level. Intu-

itively, if an interval
{
s ∈ P

Oaft

ℓ,f : q.st = s.st
}
is stored

as a replica in the last relevant partition l at a level ℓ′,

which either (1) ends inside l (i.e., s ∈ PRin

ℓ′,l ) but after
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q.end or (2) outlives the partition (i.e., s ∈ P
Raft

ℓ′,l ) then

q.end < s.end holds for s. The above two sets are com-

puted as
⋃

∀ℓ′

{{
s ∈ PRin

ℓ′,l : q.end < s.end
}⋃

P
Raft

ℓ′,l

}
.

Relationship STARTED BY. As an inverse to STARTS, a

STARTED BY selection determines all intervals that again

start at q.st but end before q.end. Therefore, if f = l

holds at a level ℓ, we consider only the intervals that

both start and end inside the partition, reporting set{
s ∈ POin

ℓ,f : q.st = s.st ∧ q.end > s.end
}
. Otherwise, re-

sults are found among all originals in f . For the POin

ℓ,f

subdivision, we directly output
{
s ∈ POin

ℓ,f : q.st = s.st
}

as their s.end is by construction before q.end. For the

intervals in s ∈ P
Oaft

ℓ,f with q.st = s.st, we apply a simi-

lar technique to STARTS for checking the q.end > s.end

condition. Intuitively, such an interval s will be reported

if it ends at any level ℓ′, either inside a partition i with

f < i < l or in the last relevant partition l but be-

fore q.end. For this purpose, we check if s is inside set⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin

ℓ′,i

}⋃{
s ∈ PRin

ℓ′,l : q.end > s.end
}}

.

Relationship FINISHES. This selection query returns

all intervals that end exactly where query q does, i.e.,

with q.end = s.end, but start before q, i.e., with q.st >

s.st. If q overlaps a single partition (f = l) at a level ℓ,

we consider the intervals that end in the last relevant

partition l:
{
s ∈ POin

ℓ,l : q.end = s.end ∧ q.st > s.st
}⋃

{
s ∈ PRin

ℓ,l : q.end = s.end
}
. Otherwise (f ̸= l), only

replicas that end inside partition l (Subdivision PRin

ℓ,l )

with q.end = s.end can be part of the results. To this

end, we face a similar challenge to STARTS/STARTED BY

as PRin

ℓ,l does not store s.st (see Table 3) to directly
check q.st > s.st. The solution is to check if an in-

terval
{
s ∈ PRin

ℓ,l : q.end = s.end
}

is contained in set
⋃

∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st > s.st
}⋃

P
Raft

ℓ′,f

}
, i.e., the in-

tervals that either (1) start before q.st in the first rel-

evant partition f at any level ℓ′ or (2) are stored in

P
Raft

ℓ′,f and so, their start is by construction before q.st.

Relationship FINISHED BY. A FINISHED BY selection

inverses the second condition of FINISHES, determin-

ing intervals with q.end = s.end and q.st < s.st. For a

level ℓ, if f = l we report the intervals that start and

end inside the partition, and satisfy both conditions,

i.e., set
{
s ∈ POin

ℓ,l : q.end = s.end ∧ q.st < s.st
}
. Oth-

erwise (f ̸= l), the results are among all intervals that

end in partition l, i.e., set
{
s ∈ POin

ℓ,l : q.end = s.end
}⋃

{
s ∈ PRin

ℓ,l : q.end = s.end
}
. For the intervals from sub-

division POin

ℓ,l , q.st < s.st holds by construction while

for PRin

ℓ,l intervals, a direct check of the condition is not

possible. Instead, we check such an interval s against

the set of intervals that start either (1) after q in the

first relevant partition at any level ℓ′ or (2) inside the

partitions in between the first and the last relevant; set⋃
∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st < s.st
}⋃{⋃

∀f<i<l P
Oaft

ℓ′,i

}}
.

Relationship MEETS. This selection query returns all

intervals that start at q.end. Under this, we report

for each level ℓ, all originals in the last relevant par-

tition l that satisfy the q.end = s.st condition, i.e., set{
s ∈ POin

ℓ,l

⋃
P

Oaft

ℓ,l : q.end = s.st
}
.

Relationship MET BY. This selection query returns all

intervals that end at q.st. To this end, the results are

among the intervals that end inside the first relevant

partition f , i.e., set
{
s ∈ POin

ℓ,f

⋃
PRin

ℓ,f : q.st = s.end
}
,

at each level ℓ.

Relationship OVERLAPS. An OVERLAPS selection deter-

mines all non-disjoint intervals to query q, which start

after q.st and end after q.end. If q overlaps a single

partition (f = l) at a level ℓ, such intervals are found

among the originals in the partition; for the POin

ℓ,f sub-

division all query conditions are checked, while for an s

in P
Oaft

ℓ,f , q.end < s.end always holds. So, we report set{
s ∈ POin

ℓ,f : q.st < s.st ∧ q.end > s.st ∧ q.end < s.end
}

⋃{
s ∈ P

Oaft

ℓ,f : q.st < s.st ∧ q.end > s.st
}
. Otherwise,

results are reported in two parts. The first part is drawn

from the originals in the last relevant partition at each

level ℓ, i.e.,
{
s ∈ POin

ℓ,l : q.end > s.st ∧ q.end < s.end
}⋃

{
s ∈ P

Oaft

ℓ,l : q.end > s.st
}
. For the second part, we con-

sider the intervals that start before partition l and out-

live q, i.e., set
{{

s ∈ PRin

ℓ,l : q.end < s.end
}⋃

P
Raft

ℓ,l

}
.

For every such interval s, q.end > s.st holds by con-

struction, but we need to check its start against q.st.

As subdivisions PRin

ℓ and P
Raft

ℓ do not store s.st, we

cannot directly check the q.st < s.st condition. Instead,

we compare s against all P
Oaft

ℓ′ at any level ℓ′ that (1)

either start before q.st in the first relevant partition f

or (2) inside every partition in between f and l, i.e., set⋃
∀ℓ′

{{
s ∈ P

Oaft

ℓ′,f : q.st < s.st
}⋃{⋃

∀f<i<l P
Oaft

ℓ′,i

}}
.

Relationship OVERLAPPED BY. As inverse to OVERLAPS,

the OVERLAPPED BY selection determines all non-disjoint

intervals to q that start before q.st and end before q.end.

If f = l, we draw the results from all intervals (both

originals and replicas) that end inside the partition; set{
s ∈ POin

ℓ,f : q.st > s.st ∧ q.st < s.end ∧ q.end > s.end
}

⋃{
s ∈ PRin

ℓ,f : q.st < s.end ∧ q.end > s.end
}
. Otherwise,

the results consist of two parts for every level ℓ. The first

part includes again originals and replicas that end in-
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side the first relevant partition f , but now, condition

q.end > s.end always holds by construction. Hence,

we report set
{
s ∈ POin

ℓ,f : q.st > s.st ∧ q.st < s.end
}⋃

{
s ∈ PRin

ℓ,f : q.st < s.end
}
. For the second part, we seek

results among all intervals that start before q, i.e., orig-

inals
{
s ∈ P

Oaft

ℓ,f : q.st > s.st
}

and replicas P
Raft

ℓ,f for

both sets q.st < s.end holds by construction as inter-

vals outlive the first relevant partition f . As neither

of the P
Oaft

ℓ,f and P
Raft

ℓ,f subdivisions maintains s.end,

we check q.end > s.end by determining the replicas at

any index level ℓ′ that end (1) either before the last

relevant partition l or (2) inside l after q.end, i.e., set⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin

ℓ′,i

}⋃{
s ∈ PRin

ℓ′,l : q.end > s.end
}}

.

Relationship CONTAINS. This selection query returns

all intervals, fully contained inside the query interval q,

i.e., with q.st < s.st ∧ q.end > s.end. For every level ℓ,

if f = l, q can contain only intervals that both start and

end in this partition, i.e., from subdivision POin

ℓ,f ; we re-

port set
{
s ∈ POin

ℓ,f : q.st < s.st ∧ q.end > s.end
}
. Oth-

erwise, the results are drawn from the original intervals

in every partition from the first relevant partition f to

the last l; for the latter only originals that end inside the

partition are considered. Specifically, for the intervals in

POin

ℓ subdivisions, we report
{
s ∈ POin

ℓ,f : q.st < s.st
}⋃

{⋃
∀f<i<l P

Oin

ℓ,i

}⋃{
s ∈ POin

ℓ,l : q.end > s.end
}
; observe

how only one condition is checked for partitions f and

l, while for every partition i in between, all originals

that end inside i are directly output. In contrast, for all

intervals in the P
Oaft

ℓ subdivisions, we need to check

the q.end > s.end condition; additionally, for every

s ∈ P
Oaft

ℓ,f subdivision, we also check if q.st < s.st holds.

As P
Oaft

ℓ subdivisions store only s.st, q.end < s.end

is checked similarly to OVERLAPPED BY, i.e., using set⋃
∀ℓ′

{{⋃
∀f<i<l P

Rin

ℓ′,i

}⋃{
s ∈ PRin

ℓ′,l : q.end > s.end
}}

.

Relationship CONTAINED BY. This selection determines

all intervals that fully contain q, i.e., with q.st > s.st∧
q.end < s.end. For each level ℓ, if f = l, the result inter-

vals are found among all subdivisions in the partition,

reporting
{
s ∈ POin

ℓ,f : q.st > s.st ∧ q.end < s.end
}⋃

{
s ∈ P

Oaft

ℓ,f : q.st > s.st
}⋃ {

s ∈ PRin

ℓ,f : q.end < s.end
}

⋃
P

Raft

ℓ,f . In contrast, if f ̸= l, the results are among

the intervals that (1) start before q.st, corresponding

to set
{
s ∈ P

Oaft

ℓ,f : q.st > s.st
}⋃

P
Raft

ℓ,f , and (2) end

after q.end. As the P
Oaft

ℓ or the P
Raft

ℓ subdivisions do

not store s.end, in order to check the q.end < s.end

condition, we need to intersect the above candidates

set with the replicas at any level ℓ′ that either end in-

side the last relevant partition l or outlive it, i.e., set⋃
∀ℓ′

{{
s ∈ PRin

ℓ′,l : q.end < s.end
}⋃

P
Raft

ℓ′,l

}
.

Relationship BEFORE. A BEFORE selection determines

all intervals that start after q. Such intervals are found

at each level ℓ as originals either (1) inside the last

relevant partition l, if they satisfy q.end < s.st, i.e., set{
s ∈ POin

ℓ,l

⋃
P

Oaft

ℓ,l : q.end < s.st
}

or (2) inside every

partition after l, i.e., set
⋃

∀i>l

{
POin

ℓ,i

⋃
P

Oaft

ℓ,i

}
. Note

that replicas from these partitions are ignored as they

will only produce duplicate results.

Relationship AFTER. An AFTER selection determines

all intervals that end before q. Results are found at each

level among the intervals which end inside either (1)

the first relevant partition f and satisfy q.st > s.end,

i.e., set
{
s ∈ POin

ℓ,f

⋃
PRin

ℓ,f : q.st > s.end
}

or (2) every

partition before f , i.e., set
⋃

∀i<f

{
POin

ℓ,i

⋃
PRin

ℓ,i

}
. Note

that subdivisions P
Oaft

ℓ,i and P
Raft

ℓ,i are ignored to avoid

duplicate results.

6.2 One Setup for All

The storage optimization discussed in Section 4.1.2 al-

lows the G-OVERLAPS setup of HINTm to reduce the

memory footprint of the index and improve cache lo-

cality. But as an optimization technique tailored for

the G-OVERLAPS relationship, it has a negative impact

on Allen’s algebra basic relationships. The key issue is

that we cannot directly check the conditions on s.end

for the POaft and PRaft subdivisions and on s.st for

PRin and PRaft . Instead, we are forced to access extra

partitions to implicitly conduct these checks, e.g., the

PRin

ℓ′,l and P
Raft

ℓ′,l subdivisions in the last relevant parti-

tion l at each index level ℓ′, for the STARTS relationship.

In view of this shortcoming, we next consider a

subs+sort setup of HINTm for Allen’s algebra.9 Es-

sentially, no changes are required if query q overlaps

a single partition (f = l) at a level ℓ as all necessary in-

formation is available for the selection conditions. Fur-

ther, the computation of MEETS, MET BY, BEFORE and

AFTER queries remains unchanged. Hence, in what fol-

lows, we discuss the necessary changes for the rest of

relationships in the f ̸= l case.

Relationship EQUALS. We can now directly retrieve

results from the first relevant partition f and the P
Oaft

ℓ,f

subdivision by checking both query conditions, i.e., we

report set
{
s ∈ P

Oaft

ℓ,f : q.st = s.st ∧ q.end = s.end
}
.

9The cache misses and the skewness & sparsity optimiza-
tions are orthogonal and can be straightforwardly combined
with the subs+sortHINTm setup.



22 G. Christodoulou et al.

Table 12: Allen’s algebra relationships, ‘One setup for all’

q REL s definition result set

EQUALS
q.st = s.st ∧ if f = l,

{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end = s.end

}
q.end = s.end else

{
s ∈ P

Oaft
ℓ,f : q.st = s.st ∧ q.end = s.end

}
STARTS

q.st = s.st ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,f : q.st = s.st

}
q.end < s.end else

{
s ∈ P

Oaft
ℓ,f : q.st = s.st ∧ q.end < s.end

}
STARTED BY

q.st = s.st ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st = s.st ∧ q.end > s.end

}
q.end > s.end else

{
s ∈ P

Oin
ℓ,f : q.st = s.st

}⋃{
s ∈ P

Oaft
ℓ,f : q.st = s.st ∧ q.end > s.end

}
FINISHES

q.end = s.end ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,l : q.end = s.end ∧ q.st > s.st

}⋃{
s ∈ P

Rin
ℓ,l : q.end = s.end

}
q.st > s.st else

{
s ∈ P

Rin
ℓ,l : q.end = s.end ∧ q.st > s.st

}
FINISHED BY

q.end = s.end ∧ ∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,l : q.end = s.end ∧ q.st < s.st

}
q.st < s.st else

{
s ∈ P

Oin
ℓ,l : q.end = s.end

}⋃{
s ∈ P

Rin
ℓ,l : q.end = s.end ∧ q.st < s.st

}
MEETS q.end = s.st ∀ℓ:

{
s ∈ P

Oin
ℓ,l

⋃
P

Oaft
ℓ,l : q.end = s.st

}
MET BY q.st = s.end ∀ℓ:

{
s ∈ P

Oin
ℓ,f

⋃
P

Rin
ℓ,f : q.st = s.end

}

OVERLAPS

q.st < s.st ∧
∀ℓ: if f = l,

{
s ∈ P

Oin
ℓ,f : q.st < s.st ∧ q.end > s.st ∧ q.end < s.end

}⋃
q.end > s.st ∧

{
s ∈ P

Oaft
ℓ,f : q.st < s.st ∧ q.end > s.st

}
q.end < s.end else

{
s ∈ P

Oin
ℓ,l : q.end > s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,l : q.end > s.st

}⋃{
s ∈ P

Rin
ℓ,l : q.st < s.st ∧ q.end < s.end

}⋃{
s ∈ P

Raft
ℓ,l : q.st < s.st

}

OVERLAPPED BY
q.st > s.st

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.st < s.end ∧ q.end > s.end

}⋃
q.st < s.end

{
s ∈ P

Rin
ℓ,f : q.st < s.end ∧ q.end > s.end

}
q.end > s.end else

{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.st < s.end

}⋃{
s ∈ P

Rin
ℓ,f : q.st < s.end

}⋃{
s ∈ P

Oaft
ℓ,f : q.st > s.st ∧ q.end > s.end

}⋃{
s ∈ P

Raft
ℓ,f : q.end > s.end

}

CONTAINS
q.st < s.st ∧

∀ℓ: if f = l,
{
s ∈ P

Oin
ℓ,f : q.st < s.st ∧ q.end > s.end

}
else

{
s ∈ P

Oin
ℓ,f : q.st < s.st

}⋃{
s ∈ P

Oaft
ℓ,f : q.st < s.st ∧ q.end > s.end

}⋃
q.end > s.end

{⋃
∀f<i<l P

Oin
ℓ,i

}⋃{
s ∈

⋃
∀f<i<l P

Oaft
ℓ,i : q.end > s.end

}⋃{
s ∈ P

Oin
ℓ,l : q.end > s.end

}

CONTAINED BY
q.st > s.st ∧ ∀ℓ: if f = l,

{
s ∈ P

Oin
ℓ,f : q.st > s.st ∧ q.end < s.end

}⋃{
s ∈ P

Oaft
ℓ,f : q.st > s.st

}⋃
q.end < s.end

{
s ∈ P

Rin
ℓ,f : q.end < s.end

}⋃
P

Raft
ℓ,f

else
{
s ∈ P

Oaft
ℓ,f : q.st > s.st ∧ q.end < s.end

}⋃{
s ∈ P

Raft
ℓ,f : q.end < s.end

}
BEFORE q.end < s.st ∀ℓ:

{
s ∈ P

Oin
ℓ,l

⋃
P

Oaft
ℓ,l : q.end < s.st

}⋃{⋃
∀i>l

{
P

Oin
ℓ,i

⋃
P

Oaft
ℓ,i

}}
AFTER q.st > s.end ∀ℓ:

{
s ∈ P

Oin
ℓ,f

⋃
P

Rin
ℓ,f : q.st > s.end

}⋃{⋃
∀i<f

{
P

Oin
ℓ,i

⋃
P

Rin
ℓ,i

}}

Relationship STARTS. With s.end in P
Oaft

ℓ,f , both query

conditions can be directly checked at each level ℓ and

thus report
{
s ∈ P

Oaft

ℓ,f : q.st = s.st ∧ q.end < s.end
}
.

Relationship STARTED BY. Similar to STARTS, we can

directly check both conditions for P
Oaft

ℓ,f in the first rel-

evant partition f . We report
{
s ∈ POin

ℓ,f : q.st = s.st
}⋃

{
s ∈ P

Oaft

ℓ,f : q.st = s.st ∧ q.end > s.end
}
, at each level.

Relationship FINISHES. With s.st in PRin

ℓ,l subdivi-

sions, we can directly check q.st > s.st and report{
s ∈ PRin

ℓ,l : q.end = s.end ∧ q.st > s.st
}
, at each level.

Relationship FINISHED BY. Similar to FINISHES, we

can directly check both conditions on PRin

ℓ,l and thus,

report at each level ℓ, set
{
s ∈ POin

ℓ,l : q.end = s.end
}⋃

{
s ∈ PRin

ℓ,l : q.end = s.end ∧ q.st < s.st
}
.

Relationship OVERLAPS. With s.st in subdivisions PRin

ℓ

and P
Raft

ℓ , we directly check q.st < s.st for partition l.

So, we report
{
s ∈ PRin

ℓ,l : q.st < s.st ∧ q.end < s.end
}

⋃{
s ∈ P

Raft

ℓ,l : q.st < s.st
}
intervals at each level along

with the set
{
s ∈ POin

ℓ,l : q.end > s.st ∧ q.end < s.end
}

⋃{
s ∈ P

Oaft

ℓ,l : q.end > s.st
}
.

Relationship OVERLAPPED BY. With s.end stored in

P
Oaft

ℓ,f and P
Raft

ℓ,f , we can directly check q.end > s.end,

reporting set
{
s ∈ P

Oaft

ℓ,f : q.st > s.st ∧ q.end > s.end
}

⋃{
s ∈ P

Raft

ℓ,f : q.end > s.end
}
along with the intervals

contained in
{
s ∈ POin

ℓ,f : q.st > s.st ∧ q.st < s.end
}⋃

{
s ∈ PRin

ℓ,f : q.st < s.end
}
.

Relationship CONTAINS. With s.end in P
Oaft

ℓ subdivi-

sions, we can directly check the q.end > s.end condition
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to output
{
s ∈ P

Oaft

ℓ,f : q.st < s.st ∧ q.end > s.end
}⋃

{
s ∈ ⋃

∀f<i<l P
Oaft

ℓ,i : q.end > s.end
}
along with the set

{
s ∈ POin

ℓ,f : q.st < s.st
}⋃{

s ∈ POin

ℓ,l : q.end > s.end
}

⋃{⋃
∀f<i<l P

Oin

ℓ,i

}
from POin

ℓ subdivisions at each level.

Relationship CONTAINED BY. With s.end stored in both

P
Oaft

ℓ,f and P
Raft

ℓ,f subdivisions, we can now directly check

the q.end < s.end condition at each level ℓ, reporting

the intervals
{
s ∈ P

Oaft

ℓ,f : q.st > s.st ∧ q.end < s.end
}

⋃{
s ∈ P

Raft

ℓ,f : q.end < s.end
}
.

6.3 Bottom-up Evaluation Approach

Both setups of HINTm can benefit from the bottom-

up approach in Section 3.2.2. The idea is to determine

the levels when the last bit of the first (last) relevant

partition f (l) are set to 1 or 0, for the first time.

Due to lack of space, we discuss only STARTS for the

G-OVERLAPS setup as an example. Specifically, results

are found among the original intervals stored in the

first relevant partition f up to the level where the last

bit in f is 1, for the first time. All originals in f at a

higher level start by construction of the index before

q.st and thus, violate q.st = s.st. In addition, at levels

after the one where the last bit of l is 0 for the first time,

q.end < s.end always holds for all s ∈ PRin

ℓ′,l . Consider

for example the query q in Figure 7. Candidate results

are contained only as originals in P4,5, where the last

bit of f = 5 is 1. Also as the last bit of l is 0 at the

4th level, all PRin intervals in P2,2, P1,1, P0,0 satisfy

q.end < s.end.

7 Experiments on Allen’s Algebra

For the second part of our experiments, we focus on se-

lection queries under the basic relationships of Allen’s

algebra. We first compare the two alternative HINTm

setups from Section 6 and then put the best setup

against the competition. We extended our code for all

competitive indices in Section 5 to support Allen’s alge-

bra. We ran our tests on datasets BOOKS, WEBKIT,

TAXIS and GREEND. Lastly, parameter m and all

other index parameters are set according to Table 7.

7.1 Determining the Best Index Setup

Figure 17 reports the throughputs achieved by the two

HINTm setups; results in WEBKIT and GREEND are

similar and therefore omitted due to lack of space. Note

HINTm for G-OVERLAPS
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Fig. 17: Comparing HINTm setups

that both setups adopt the bottom-up evaluation (Sec-

tion 3.2.2) and employ the skewness & sparsity and

the cache misses optimizations (Sections 4.2 and 4.3).

The results back up our discussion in Section 6. The

‘one setup for all’ setup drastically improves the per-

formance of HINTm for the majority of the queries.

Essentially, the G-OVERLAPS setup matches the perfor-

mance of ‘one setup for all’ in the G-OVERLAPS relation-

ship, as expected, and in relationships where only one

partition per level is examined by both setups, without

the need to indirectly check a condition, i.e., in MEETS,

MET BY, BEFORE and AFTER. In the rest, ‘one setup for

all’ is from one to several orders of magnitude faster.

For the rest of our analysis, HINTm always operates

under ‘one setup for all’.

7.2 Index Performance Comparison

Figure 18 compares the performance of all studied in-

dices. The first 4 rows of plots report the results for

OVERLAPS, OVERLAPPED BY, CONTAINS, CONTAINED BY,

while varying the query extent, similar to Figure 14.

Note that for CONTAINED BY on TAXIS and GREEND,

we consider a different range of values because these

datasets contain significantly shorter intervals compared

to BOOKS and WEBKIT. The last row of plots reports

the throughput on the rest of the relationships where

the selection queries essentially resemble typical stab-

bing queries, i.e., query overlaps either one partition per

level or only two overall specific partitions in EQUALS.
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Fig. 18: Comparing throughputs on Allen’s algebra, real datasets

Overall, HINTm exhibits the highest throughput for

all queries based on Allen’s algebra relationships, in

line with the results in Figure 14. Its performance gap

to the competitor indices ranges from almost half to

several orders of magnitude. Essentially, the smallest

performance gap are observed mainly in WEBKIT and

GREEND where the input intervals are very short.

8 Conclusions

We proposed a hierarchical index (HINT) for inter-

vals, which has low space complexity and minimizes

the number of data accesses and comparisons during

query evaluation. Our experiments on real and syn-

thetic datasets show that HINT outperforms previous
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work by almost one order of magnitude in a wide vari-

ety of interval data and query distributions. Our index

fully supports selection queries based on Allen’s rela-

tionships [1] between intervals, achieving consistently

excellent performance independently of the query pred-

icate. In the future, we plan to investigate extensions of

HINT that support queries that combine temporal se-

lections and selections on additional object attributes

or the duration of intervals [4]. In addition, we plan to

investigate effective parallelization techniques, taking

advantage of the fact that HINT partitions are inde-

pendent.
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11. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning.
VLDB J. 26(3), 447–466 (2017)
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