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ABSTRACT
Indexing intervals is a fundamental problem, finding a wide range

of applications, most notably in temporal and uncertain databases.

In this paper, we propose HINT, a novel and efficient in-memory

index for intervals, with a focus on interval overlap queries, which

are a basic component of many search and analysis tasks. HINT

applies a hierarchical partitioning approach, which assigns each

interval to at most two partitions per level and has controlled space

requirements. We reduce the information stored at each partition

to the absolutely necessary by dividing the intervals in it based on

whether they begin inside or before the partition boundaries. In

addition, our index includes storage optimization techniques for

the effective handling of data sparsity and skewness. Experimental

results on real and synthetic interval sets of different characteristics

show that HINT is typically one order of magnitude faster than

existing interval indexing methods.
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1 INTRODUCTION
A wide range of applications require managing large collections of

intervals. In temporal databases [5, 34], each tuple has a validity
interval, which captures the period of time that the tuple is valid.

In statistics and probabilistic databases [12], uncertain values are

often approximated by (confidence or uncertainty) intervals. In data

anonymization [33], attribute values are often generalized to value

ranges. XML data indexing techniques [24] encode label paths as
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intervals and evaluate path expressions using containment rela-

tionships between the intervals. Several computational geometry

problems [13] (e.g., windowing) use interval search as a module.

The internal states of window queries in Stream processors (e.g.

Flink/Kafka) can be modeled and managed as intervals [2].

We study the classic problem of indexing a large collection S

of objects (or records), based on an interval attribute that charac-

terizes each object. Hence, we model each object s ∈ S as a triple

⟨s .id, s .st , s .end⟩, where s .id is the object’s identifier (which can be

used to access any other attribute of the object), and [s .st , s .end] is
the interval associated to s . Our focus is on interval range queries,
the most fundamental query type over intervals. Given a query

interval q = [q.st ,q.end], the objective is to find the ids of all ob-

jects s ∈ S, whose intervals overlap with q. Formally, the result of a

range query q on object collection S is {s .id | s ∈ S∧(s .st ≤ q.st ≤
s .end ∨q.st ≤ s .st ≤ q.end)}. Range queries are also known as time
travel or timeslice queries in temporal databases [32]. Examples of

such queries on different data domains include the following:

• on a relation storing employment periods: find the employees
who were employed sometime in [1/1/2021, 2/28/2021].
• on weblog data: find the users who were active sometime
between 10:00am and 11:00am yesterday.
• on taxi trips data: find the taxis which were active (on a trip)
between 15:00 and 17:00 on 3/3/2021.
• on uncertain temperatures: find all stations having tempera-
ture between 6 and 8 degrees with a non-zero probability.

Range queries can be specialized to retrieve intervals that satisfy

any relation in Allen’s set [1], e.g., intervals that are covered by q.
Stabbing queries (pure-timeslice queries in temporal databases) are

a special class of range queries for which q.st = q.end . Without

loss of generality, we assume that the intervals and queries are

closed at both ends. Our method can easily be adapted to manage

intervals and/or process range queries, which are open at either or

both sides, i.e., [o.st ,o.end), (o.st ,o.end] or (o.st ,o.end).
For efficient range and stabbing queries over collections of inter-

vals, classic data structures for managing intervals, like the interval

tree [16], are typically used. Competitive indexing methods include

the timeline index [19], 1D-grids and the period index [4]. All these

methods, which we review in detail in Section 2, have not been

optimized for handling very large collections of intervals in main

memory. Hence, there is room for new data structures, which ex-

ploit the characteristics and capabilities of modern machines that

have large enough memory capacities for the scale of data found in

most applications.

Contributions. In this paper, we propose a novel and general-

purpose Hierarchical index for INTervals (HINT), suitable for appli-

cations that manage large collections of intervals. HINT defines a

hierarchical decomposition of the domain and assigns each interval
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Table 1: Comparison of interval indices

Method query cost space updates
Interval tree [16] medium low slow

Timeline index [19] medium medium slow

1D-grid medium medium fast

Period index [4] medium medium fast

HINT/HINT
m

(our work) low low fast

in S to at most two partitions per level. If the domain is relatively

small and discrete, our index can process interval range queries

with no comparisons at all. For the general case where the domain

is large and/or continuous, we propose a generalized version of

HINT, denoted by HINT
m
, which limits the number of levels to

m+1 and greatly reduces the space requirements. HINT
m

conducts

comparisons only for the intervals in the first and last accessed

partitions at the bottom levels of the index. Some of the unique and

novel characteristics of our index include:

• The intervals in each partition are further divided into groups,

based on whether they begin inside or before the partition.

This division (1) cancels the need for detecting and eliminat-

ing duplicate query results, (2) reduces the data accesses to

the absolutely necessary, and (3) minimizes the space needed

for storing the objects into the partitions.

• As we theoretically prove, the expected number of HINT
m

partitions for which comparisons are necessary is just four.

This guarantees fast retrieval times, independently of the

query extent and position.

• The optimized version of our index stores the intervals in

all partitions at each level sequentially and uses a dedicated

array with just the ids of intervals there, as well as links

between non-empty partitions at each level. These optimiza-

tions facilitate sequential access to the query results at each

level, while avoiding accessing unnecessary data.

Table 1 qualitatively compares HINT to previous work. Our ex-

periments on real and synthetic datasets show that our index is one
order of magnitude faster than the competition. As we explain in

Section 2, existing indices typically require at least one comparison

for each query result (interval tree, 1D-grid) or may access and com-

pare more data than necessary (timeline index, 1D-grid). Further,

the 1D-grid, the timeline and the period index need more space than

HINT in the presence of long intervals in the data due to excessive

replication either in their partitions (1D-grid, period index) or their

checkpoints (timeline index). HINT gracefully supports updates,

since each partition (or division within a partition) is independent

from others. The construction cost of HINT is also low, as we verify

experimentally. Summing up, HINT is superior in all aspects to the

state-of-the-art and constitutes an important contribution, given

the fact that range queries over large collections of intervals is a

fundamental problem with numerous applications.

Outline. Section 2 reviews related work and presents in detail

the characteristics and weaknesses of existing interval indices. In

Section 3, we present HINT and its generalized HINT
m

version and

analyze their complexity. Optimizations that boost the performance

of HINT
m

are presented in Section 4. We evaluate the performance

of HINT
m

experimentally in Section 5 on real and synthetic data

and compare it to the state-of-the-art. Finally, Section 6 concludes

the paper with a discussion about future work.

Interval tree (interval search)

domainccL cRcLL cLR cRL cRR

c

cL

cLL cLR

cR

cRL cRR

s1
s2 s3

s4s5
s6

s7

s8
s9

s10
s11

s12
s13 s14

ST ={s1, s2, s3} END ={s2, s3, s1}

ST ={s5, s4}
END ={s5, s4}

ST ={s6, s7}
END ={s7, s6}

ST ={s8, s9}
END ={s9, s8}

ST ={s10, s11}
END ={s10, s11}

ST ={s12, s13}
END ={s12, s13}

ST ={s14}
END ={s14}

q.st q.end

23

Figure 1: Example of an interval tree

2 RELATEDWORK
In this section, we present in detail the state-of-the-artmain-memory

indices for intervals, to which we experimentally compare HINT

in Section 5. In addition, we briefly discuss other relevant data

structures and previous work on other queries over interval data.

Interval tree.One of the most popular data structures for intervals

is Edelsbrunner’s interval tree [16], a binary search tree, which

takesO(n) space and answers queries inO(logn +K) time (K is the

number of query results). The tree divides the domain hierarchically

by placing all intervals strictly before (after) the domain’s center

to the left (right) subtree and all intervals that overlap with the

domain’s center at the root. This process is repeated recursively for

the left and right subtrees using the centers of the corresponding

sub-domains. The intervals assigned to each tree node are sorted

in two lists based on their starting and ending values, respectively.

Interval trees are used to answer stabbing and interval (i.e., range)
queries. For example, Figure 1 shows a set of 14 intervals s1, . . . , s14,
which are assigned to 7 interval tree nodes and a query interval

q = [q.st ,q, end]. The domain point c corresponding to the tree’s

root is contained in the query interval, hence all intervals in the root

are reported and both the left and right children of the root have to

be visited recursively. Since the left child’s point cL is before q.st ,
we access the END list from the end and report results until we find

an interval s for which s .end < q.st ; then we access recursively the

right child of cL . This process is repeated symmetrically for the

root’s right child cR . The main drawback of the interval tree is that

we need to perform comparisons for most of the intervals in the

query result. In addition, updates on the tree can be slow because

the lists at each node should be kept sorted. A relational interval

tree for disk-resident data was proposed in [21].

Timeline index. The timeline index [19] is a general-purpose ac-

cess method for temporal (versioned) data, implemented in SAP-

HANA. It keeps the endpoints of all intervals in an event list, which
is a table of ⟨time, id, isStart⟩ triples, where time is the value of the
start or end point of the interval, id is the identifier of the interval,

and isStart 1 or 0, depending on whether time corresponds to the

start or end of the interval, respectively. The event list is sorted

primarily by time and secondarily by isStart (descending). In ad-

dition, at certain timestamps, called checkpoints, the entire set of
active object-ids is materialized, that is the intervals that contain

the checkpoint. For each checkpoint, there is a link to the first triple

in the event list for which isStart=0 and time is greater than or

equal to the checkpoint, Figure 2(a) shows a set of five intervals

(s1, . . . , s5) and Figure 2(b) exemplifies a timeline index for them.
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(a) set of intervals timeline index

Figure 2: Example of a timeline index

To evaluate a range query (called time-travel query in [19]), we

first find the largest checkpoint which is smaller than or equal

to q.st (e.g., c2 in Figure 2) and initialize R as the active interval

set at the checkpoint (e.g., R = {s1, s3, s5}). Then, we scan the

event list from the position pointed by the checkpoint, until the

first triple for which time ≥ q.st , and update R by inserting to it

intervals corresponding to an isStart = 1 event and deleting the

ones corresponding to a isStart = 0 triple (e.g., R becomes {s3, s5}).
When we reach q.st , all intervals in R are guaranteed query results

and they are reported. We continue scanning the event list until

the first triple after q.end and we add to the result the ids of all

intervals corresponding to triples with isStart = 1 (e.g., s2 and s4).
The timeline index accesses more data and performs more com-

parisons than necessary, during range query evaluation. The index

also requires a lot of extra space to store the active sets of the check-

points. Finally, ad-hoc updates are expensive because the event list

should be kept sorted.

1D-grid. A simple and practical data structure for intervals is a

1D-grid, which divides the domain into p partitions P1, P2, . . . , Pp .
The partitions are pairwise disjoint in terms of their interval span

and collectively cover the entire data domain D. Each interval is

assigned to all partitions that it overlaps with. Figure 3 shows 5

intervals assigned to p = 4 partitions; s1 goes to P1 only, whereas
s5 goes to all four partitions. Given a range query q, the results

can be obtained by accessing each partition Pi that overlaps with
q. For each Pi which is contained in q (i.e., q.st ≤ Pi .st ∧ Pi .end ≤
q.end), all intervals in Pi are guaranteed to overlap with q. For each
Pi , which overlaps with q, but is not contained in q, we should

compare each si ∈ Pi with q to determine whether si is a query
result. If the interval of a range query q overlaps with multiple

partitions, duplicate results may be produced. An efficient approach

for handling duplicates is the reference value method [15], which

was originally proposed for rectangles but can be directly applied

for 1D intervals. For each interval s found to overlap with q in

a partition Pi , we compute v = max{s .st ,q.st} as the reference
value and report s only if v ∈ [Pi .st , Pi .end]. Since v is unique, s is
reported only in one partition. In Figure 3, interval s4 is reported
only in P2 which contains value max{s4.st ,q.st}.

The 1D-grid has two drawbacks. First, the duplicate results

should be computed and checked before being eliminated by the

reference value. Second, if the collection contains many long inter-

vals, the index may grow large in size due to excessive replication

which increases the number of duplicate results to be eliminated. In

contrast, 1D-grid supports fast updates as the partitions are stored

independently with no need to organize the intervals in them.

Period index. The period index [4] is a domain-partitioning self-

adaptive structure, specialized for range and duration queries. The

FLAT

P1 P2 P3 P4

s1 s3 s4
s2

s5

qmax(s4.st,q.st) P1 = {s1,s3,s5}
P2 = {s3,s4,s5}
P3 = {s2,s4,s5}
P4 = {s2,s4,s5}

P1 P2 P3 P4

s1 s3 s4
s2

s5

q
P1

O = {s1,s3,s5}, P1
R= ∅

P2
O= {s4}, P2

R = {s3,s5}
P3

O= {s2}, P3
R = {s4,s5}

P3
O= ∅, P3

R = {s2,s4,s5}

Figure 3: Example of a 1D-gridPeriod Index

P1 P2

s1
s3

s4

s2

s5

Figure 4: Example of a period index

time domain is split into coarse partitions as in a 1D-grid and

then each partition is divided hierarchically, in order to organize

the intervals assigned to the partition based on their positions

and durations. Figure 4 shows a set of intervals and how they are

partitioned in a period index. There are two primary partitions P1
and P2 and each of them is divided hierarchically to three levels.

Each level corresponds to a duration length and each interval is

assigned to the level corresponding to its duration. The top level

stores intervals shorter than the length of a division there, the

second level stores longer intervals but shorter than a division

there, and so on. Hence, each interval is assigned to at most two

divisions, except for intervals which are assigned to the bottom-

most level, which can go to an arbitrary number of divisions. During

query evaluation, only the divisions that overlap the query range

are accessed; if the query carries a duration predicate, the divisions

that are shorter than the query duration are skipped. For range

queries, the period index performs in par with the interval tree and

the 1D-grid [4], so we also compare against this index in Section 5.

Other works. Another classic data structure for intervals is the
segment tree [13], a binary search tree, which has O(n logn) space
complexity and answers stabbing queries inO(logn +K) time. The

segment tree is not designed for range queries, for which it requires

a duplicate result elimination mechanism. In computational geome-

try [13], indexing intervals has been studied as a subproblemwithin

orthogonal 2D range search, and the worst-case optimal interval

tree is typically used. Indexing intervals has re-gained interest with

the advent of temporal databases [5]. For temporal data, a number

of indices are proposed for secondary memory, mainly for effective

versioning and compression [3, 23]. Such indexes are tailored for

historical versioned data, while we focus on arbitrary interval sets,

queries, and updates.

Additional research on indexing intervals does not address range

queries, but other operations such as temporal aggregation [19, 20,

26] and interval joins [6, 7, 9–11, 14, 30, 31, 35]. The timeline index

[19] can be directly used for temporal aggregation. Piatov et al.

[29] present a collection of plane-sweep algorithms that extend the

timeline index to support aggregation over fixed intervals, sliding

window aggregates, and MIN/MAX aggregates. The timeline in-

dex was later adapted for interval overlap joins [30, 31]. A domain
partitioning technique for parallel processing of interval joins was
proposed in [6, 7, 9]. Alternative partitioning techniques for interval

joins were proposed in [10, 14]. Partitioning techniques for interval

joins cannot replace interval indices as they are not designed for

range queries. Temporal joins considering Allen’s algebra relation-

ships for RDF data were studied in [11]. Multi-way interval joins in
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Table 2: Table of notations
notation description

s .id, s .st, s .end identifier, start, end point of interval s
q = [q .st, q .end] query range interval

pref ix (k, x ) k -bit prefix of integer x
Pℓ,i i-th partition at level ℓ of HINT/HINT

m

Pℓ, f (Pℓ,l ) first (last) partition at level ℓ that overlaps with q
PO
ℓ,i (P

R
ℓ,i ) sub-partition of Pℓ,i with originals (replicas)

POin
ℓ,i (P

Oaf t
ℓ,i ) intervals in PO

ℓ,i i ending inside (after) the partition

the context of temporal k-clique enumeration were studied in [35].

Awad et al. [2] define interval events in data streams by events of the

same or different types that are observed in succession. Analytical

operations based on aggregation or reasoning operations can be

used to formulate composite interval events.

3 HINT
In this section, we propose the Hierarchical index for INTervals
or HINT, which defines a hierarchical domain decomposition and

assigns each interval to atmost two partitions per level. The primary

goal of the index is to minimize the number of comparisons during

query evaluation, while keeping the space requirements relatively

low, even when there are long intervals in the collection. HINT

applies a smart division of intervals in each partition into two

groups, which avoids the production and handling of duplicate

query results and minimizes the number of intervals that have to be

accessed. In Section 3.1, we present a version of HINT, which avoids

comparisons overall during query evaluation, but it is not always

applicable and may have high space requirements. Then, Section 3.2

presents HINT
m
, the general version of our index, used for intervals

in arbitrary domains. Last, Section 3.3 describes our analytical

model for setting them parameter and Section 3.4 discusses updates.

Table 2 summarizes the notation used in the paper.

3.1 A comparison-free version of HINT
We first describe a version of HINT, which is appropriate in the case

of a discrete and not very large domain D. Specifically, assume that

the domain D wherefrom the endpoints of intervals in S take value

is [0, 2m−1]. We can define a regular hierarchical decomposition

of the domain into partitions, where at each level ℓ from 0 tom,

there are 2
ℓ
partitions, denoted by array Pℓ,0, . . . , Pℓ,2ℓ−1. Figure 5

illustrates the hierarchical domain partitioning form = 4.

Each interval s ∈ S is assigned to the smallest set of partitions
which collectively define s . It is not hard to show that s will be
assigned to at most two partitions per level. For example, in Figure 5,

interval [5, 9] is assigned to one partition at level ℓ = 4 and two

partitions at level ℓ = 3. The assignment procedure is described

by Algorithm 1. In a nutshell, for an interval [a,b], starting from

the bottom-most level ℓ, if the last bit of a (resp. b) is 1 (resp. 0),
we assign the interval to partition Pℓ,a (resp. Pℓ,b ) and increase a
(resp. decrease b) by one. We then update a and b by cutting-off

their last bits (i.e., integer division by 2, or bitwise right-shift). If, at

the next level, a > b holds, indexing [a,b] is done.

3.1.1 Range queries. A range query q can be evaluated by finding

at each level the partitions that overlap with q. Specifically, the par-
titions that overlap with the query interval q at level ℓ are partitions
Pℓ,pref ix (ℓ,q .st ) to Pℓ,pref ix (ℓ,q .end ), where pre f ix(k,x) denotes

ALGORITHM 1: Assignment of an interval to partitions

Input :HINT index H, interval s
Output :updated H after indexing s

1 a ← s .st ; b ← s .end ; ▷ set masks to s endpoints

2 ℓ ←m; ▷ start at the bottom-most level

3 while ℓ ≥ 0 and a ≤ b do
4 if last bit of a is 1 then
5 add s to H .Pℓ,a ; ▷ update partition

6 a ← a + 1;

7 if last bit of b is 0 then
8 add s to H .Pℓ,b ; ▷ update partition

9 b ← b − 1;

10 a ← a ÷ 2; b ← b ÷ 2; ▷ cut-off last bit

11 ℓ ← ℓ − 1; ▷ repeat for previous level

Hierarchical partitioning of space

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

011 100

0101

Figure 5: Hierarchical partitioning and assignment of [5, 9]

the k-bit prefix of integer x . We call these partitions relevant to
the query q. All intervals in the relevant partitions are guaranteed

to overlap with q and intervals in none of these partitions cannot

possibly overlap with q. However, since the same interval s may

exist in multiple partitions that overlap with a query, s may be

reported multiple times in the query result.

We propose a technique that avoids the production and therefore,

the need for elimination of duplicates and, at the same time, mini-

mizes the number of data accesses. For this, we divide the intervals

in each partition Pℓ,i into two groups: originals PO
ℓ,i and replicas

PR
ℓ,i . Group P

O
ℓ,i contains all intervals s ∈ Pℓ,i that begin at Pℓ,i i.e.,

pre f ix(ℓ, s .st) = i . Group PR
ℓ,i contains all intervals s ∈ Pℓ,i that

begin before Pℓ,i , i.e., pre f ix(ℓ, s .st) , i .
1
Each interval is added as

original in only one partition of HINT. For example, interval [5, 9]

in Figure 5 is added to PO
4,5, P

R
3,3, and P

R
3,4.

Given a range query q, at each level ℓ of the index, we report all

intervals in the first relevant partition Pℓ,f (i.e., PO
ℓ,f ∪ P

R
ℓ,f ). Then,

for every other relevant partition Pℓ,i , i > f , we report all intervals

in PO
ℓ,i and ignore PR

ℓ,i . This guarantees that no result is missed

and no duplicates are produced. The reason is that each interval

s will appear as original in just one partition, hence, reporting

only originals cannot produce any duplicates. At the same time,

all replicas PR
ℓ,f in the first partitions per level ℓ that overlap with

q begin before q and overlap with q, so they should be reported.

On the other hand, replicas PR
ℓ,i in subsequent relevant partitions

(i > f ) contain intervals, which are either originals in a previous

partition Pℓ, j , j < i or replicas in PR
ℓ,f , so, they can safely be skipped.

Algorithm 2 describes the range query algorithm using HINT.

1
Whether an interval s ∈ Pℓ,i is assigned to PO

ℓ,i or P
R
ℓ,i is determined at insertion

time (Algorithm 1). At the first time Line 5 is executed, s is added as an original and in

all other cases as a replica. If Line 5 is never executed, then s is added as original the

only time that Line 8 is executed.
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ALGORITHM 2: Range query on HINT

Input :HINT index H, query interval q
Output : set R of all intervals that overlap with q

1 R ← ∅;

2 foreach level ℓ in H do
3 p ← pref ix (ℓ, q .st );
4 R ← R ∪ {s .id |s ∈ H .PO

ℓ,p ∪ H .PR
ℓ,p }

5 while p < pref ix (ℓ, q .end ) do
6 set p ← p + 1;
7 R ← R ∪ {s .id |s ∈ H .PO

ℓ,p }

8 return R;

For example, consider the hierarchical partitioning of Figure 6

and a query interval q = [5, 9]. The binary representations of q.st
and q.end are 0101 and 1001, respectively. The relevant partitions

at each level are shown in bold (blue) and dashed (red) lines and

can be determined by the corresponding prefixes of 0101 and 1001.

At each level ℓ, all intervals (both originals and replicas) in the first

partitions Pℓ,f (bold/blue) are reported while in the subsequent

partitions (dashed/red), only the original intervals are.

Range queries

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15
0101 1001

010 100

01 10

0 1

0

Figure 6: Accessed partitions for range query [5, 9]

Discussion. The version of HINT described above finds all range

query results, without conducting any comparisons. This means

that in each partition Pℓ,i , we only have to keep the ids of the inter-

vals that are assigned to Pℓ,i and do not have to store/replicate the

interval endpoints. In addition, the relevant partitions at each level

are computed by fast bit-shifting operations which are comparison-

free. To use HINT for arbitrary integer domains, we should first

normalize all interval endpoints by subtracting the minimum end-

point, in order to convert them to values in a [0, 2m − 1] domain

(the same transformation should be applied on the queries). If the

requiredm is very large, we can index the intervals based on their

m-bit prefixes and support approximate search on discretized data.

Approximate search can also be applied on intervals in a real-valued

domain, after rescaling and discretization in a similar way.

3.2 HINTm : indexing arbitrary intervals
We now present a generalized version of HINT, denoted by HINT

m
,

which can be used for intervals in arbitrary domains. HINT
m

uses

a hierarchical domain partitioning withm + 1 levels, based on a

[0, 2m − 1] domain D; each raw interval endpoint is mapped to a

value in D, by linear rescaling. The mapping function f (R→ D) is

f (x) = ⌊ x−min(x )
max (x )−min(x ) · (2

m − 1)⌋, wheremin(x) andmax(x) are

the minimum and maximum interval endpoints in the dataset S ,
respectively. Each raw interval [s .st , s .end] is mapped to interval

[f (s .st), f (s .end)]. The mapped interval is then assigned to at most

two partitions per level in HINT
m
, using Algorithm 1.

Range queries

P0,0

P1,0 P1,1

P2,1 P2,2

P3,2 P3,3 P3,4

P4,5 P4,6 P4,7 P4,8 P4,9

q
10010101

010

Figure 7: Avoiding redundant comparisons in HINTm

For the ease of presentation, we will assume that the raw interval

endpoints take values in [0, 2m
′

− 1], wherem′ > m, which means

that the mapping function f simply outputs them most significant

bits of its input. As an example, assume that m = 4 and m′ = 6.

Interval [21, 38] (=[0b010101, 0b100110]) is mapped to interval [5, 9]

(=[0b0101, 0b1001]) and assigned to partitions P4,5, P3,3, and P3,4,
as shown in Figure 5. So, in contrast to HINT, the set of partitions

whereto an interval s is assigned in HINT
m

does not define s , but
the smallest interval in the [0, 2m − 1] domain D, which covers s . As
in HINT, at each level ℓ, we divide each partition Pℓ,i to P

O
ℓ,i and

PR
ℓ,i , to avoid duplicate query results.

3.2.1 Query evaluation using HINTm . For a range query q, simply

reporting all intervals in the relevant partitions at each level (as in

Algorithm 2) would produce false positives. Instead, comparisons

to the query endpoints may be required for the first and the last

partition at each level that overlap with q. Specifically, we can

consider each level of HINT
m

as a 1D-grid (see Section 2) and go

through the partitions at each level ℓ that overlap with q. For the
first partition Pℓ,f , we verify whether s overlaps with q for each

interval s ∈ PO
ℓ,f and each s ∈ PR

ℓ,f . For the last partition Pℓ,l , we

verify whether s overlaps with q for each interval s ∈ PO
ℓ,l . For each

partition Pℓ,i between Pℓ,f and Pℓ,l , we report all s ∈ P
O
ℓ,i without

any comparisons. As an example, consider the HINT
m

index and

the range query interval q shown in Figure 7. The identifiers of

the relevant partitions to q are shown in the figure (and also some

indicative intervals that are assigned to these partitions). At level

m = 4, we have to perform comparisons for all intervals in the first

relevant partitions P4,5. In partitions P4,6,. . . ,P4,8, we just report the
originals in them as results, while in partition P4,9 we compare the

start points of all originals with q, before we can confirm whether

they are results or not. We can simplify the overlap tests at the first

and the last partition of each level ℓ based on the following:

Lemma 1. At every level ℓ, each s ∈ PR
ℓ,f is a query result iff

q.st ≤ s .end . If l > f , each s ∈ PO
ℓ,l is a query result iff s .st ≤ q.end .

Proof. For the first relevant partition Pℓ,f at each level ℓ, for

each replica s ∈ PR
ℓ,f , s .st < q.st , so q.st ≤ s .end suffices as an

overlap test. For the last partition Pℓ,l , if l > f , for each original

s ∈ PO
ℓ,f , q.st < s .st , so s .st ≤ q.end suffices as an overlap test. □

3.2.2 Avoiding redundant comparisons in query evaluation. One of
our most important findings in this study and a powerful feature of

HINT
m

is that at most levels, it is not necessary to do comparisons

at the first and/or the last partition. For instance, in the previous
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example, we do not have to perform comparisons for partition P3,4,
since any interval assigned to P3,4 should overlap with P4,8 and
the interval spanned by P4,8 is covered by q. This means that the

start point of all intervals in P3,4 is guaranteed to be before q.end
(which is inside P4,9). In addition, observe that for any relevant

partition which is the last partition at an upper level and covers

P3,4 (i.e., partitions {P2,2, P1,1, P0,0}), we do not have to conduct the
s .st ≤ q.end tests as intervals in these partitions are guaranteed to

start before P4,9. The lemma below formalizes these observations:

Lemma 2. If the first (resp. last) relevant partition for a query q
at level ℓ (ℓ < m) starts (resp. ends) at the same value as the first
(resp. last) relevant partition at level ℓ + 1, then for every first (resp.
last) relevant partition Pv,f (resp. Pv,l ) at levels v ≤ ℓ, each interval
s ∈ Pv,f (resp. s ∈ Pv,l ) satisfies s .end ≥ q.st (resp. s .st ≤ q.end).

Proof. Let P .st (resp. P .end) denote the first (resp. last) domain

value of partition P . Consider the first relevant partition Pℓ,f at level
ℓ and assume that Pℓ,f .st = Pℓ+1,f .st . Then, for every interval s ∈
Pℓ,f , s .end ≥ Pℓ+1,f .end , otherwise s would have been allocated to

Pℓ+1,f instead of Pℓ,f . Further, Pℓ+1,f .end ≥ q.st , since Pℓ+1,f is

the first partition at level ℓ+1 which overlaps withq. Hence, s .end ≥
q.st . Moreover, for every interval s ∈ Pv,f with v < ℓ, s .end ≥
Pℓ+1,f .end holds, as interval Pv,f covers interval Pℓ,f ; so, we also
have s .end ≥ q.st . Symmetrically, we prove that if Pℓ,l .end =
Pℓ+1,l .end , then for each s ∈ Pv,l ,v ≤ ℓ, s .st ≤ q.end . □

We next focus on how to rapidly check the condition of Lemma 2.

Essentially, if the last bit of the offset f (resp. l) of the first (resp.
last) partition Pℓ,f (resp. Pℓ,l ) relevant to the query at level ℓ is

0 (resp. 1), then the first (resp. last) partition at level ℓ − 1 above

satisfies the condition. For example, in Figure 7, consider the last

relevant partition P4,9 at level 4. The last bit of l = 9 is 1; so, the last

partition P3,4 at level 3 satisfies the condition and we do not have

to perform comparisons in the last partitions at level 3 and above.

Algorithm 3 is a pseudocode for the range query algorithm on

HINT
m
. The algorithm accesses all levels of the index, bottom-up.

It uses two auxiliary flag variables comp f irst and complast to mark

whether it is necessary to perform comparisons at the current level

(and all levels above it) at the first and the last partition, respectively,

according to the discussion in the previous paragraph. At each level

ℓ, we find the offsets of the relevant partitions to the query, based

on the ℓ-prefixes of q.st and q.end (Line 4). For the first position

f = pre f ix(q, st), the partitions holding originals and replicas PO
ℓ,f

and PR
ℓ,f are accessed. The algorithm first checks whether f = l , i.e.,

the first and the last partitions coincide. In this case, if comp f irst
and complast are set, then we perform all comparisons in PO

ℓ,f
and apply the first observation in Lemma 1 to PR

ℓ,f . Else, if only

complast is set, we can safely skip the q.st ≤ s .end comparisons;

if only comp f ist is set, regardless whether f = l , we just perform
q.st ≤ s .end comparisons to both originals and replicas to the first

partition. Finally, if neither comp f irst nor complast are set, we just
report all intervals in the first partition as results. If we are at the

last partition Pℓ,l and l > f (Line 17) then we just examine PO
ℓ,l and

apply just the s .st ≤ q.end test for each interval there, according to

Lemma 1. Finally, for all partitions in-between the first and the last

one, we simply report all original intervals there.

ALGORITHM 3: Range query on HINT
m

Input :HINTm index H, query interval q
Output : set R of intervals that overlap with q

1 compf ir st ← TRU E ; complast ← TRU E ;
2 R ← ∅;

3 for ℓ =m to 0 do ▷ bottom-up
4 f ← pref ix (ℓ, q .st ); l ← pref ix (ℓ, q .end);
5 for i = f to l do
6 if i = f then ▷ first overlapping partition
7 if i = l and compf ir st and complast then
8 R ← R ∪ {s .id |s ∈ H .PO

ℓ,i , q .st ≤ s .end ∧ s .st ≤
q .end };

9 R ← R ∪ {s .id |s ∈ H .PR
ℓ,i , q .st ≤ s .end };

10 else if i = l and complast then
11 R ← R ∪ {s .id |s ∈ H .PO

ℓ,i , s .st ≤ q .end };
12 R ← R ∪ {s .id |s ∈ H .PR };

13 else if compf ir st then
14 R ← R∪{s .id |s ∈ H .PO

ℓ,i ∪H .PR
ℓ,i , q .st ≤ s .end };

15 else
16 R ← ‘R ∪ {s .id |s ∈ H .PO

ℓ,i ∪ H .PR
ℓ,i };

17 else if i = l and complast then ▷ last partition, l > f
18 R ← R ∪ {s .id |s ∈ H .PO

ℓ,i , s .st ≤ q .end };

19 else ▷ in-between or last (l > f ), no comparisons
20 R ← R ∪ {s .id |s ∈ H .PO

ℓ,i };

21 if f mod 2 = 0 then ▷ last bit of f is 0
22 compf ir st ← FALSE ;

23 if l mod 2 = 1 then ▷ last bit of l is 1
24 complast ← FALSE ;

25 return R;

3.2.3 Complexity Analysis. Let n be the number of intervals in S.

Assume that the domain is [0, 2m
′

− 1], wherem′ > m. To analyze

the space complexity of HINT
m
, we first prove the following lemma:

Lemma 3. The total number of intervals assigned at the lowest
levelm of HINTm is expected to be n.

Proof. Each interval s ∈ S will go to zero, one, or two partitions

at level m, based on the bits of s .st and s .end at position m (see

Algorithm 1); on average, s will go to one partition. □

Using Algorithm 1, when an interval is assigned to a partition at

a level ℓ, the interval is truncated (i.e., shortened) by 2
m′−ℓ

. Based

on this, we analyze the space complexity of HINT
m

as follows.

Theorem 1. Let λ be the average length of intervals in input collec-
tion S . The space complexity of HINTm isO(n ·log

2
(2log2 λ−m

′+m+1)).

Proof. Based on Lemma 3, each s ∈ S will be assigned on av-

erage to one partition at levelm and will be truncated by 2
m′−m

.

Following Algorithm 1, at the next levelm − 1, s is also be expected
to be assigned to one partition (see Lemma 3) and truncated by

2
m′−m+1

, and so on, until the entire interval is truncated (condition

a ≤ b is violated at Line 3 of Algorithm 1). Hence, we are looking

for the number of levels whereto each s will be assigned, or for

the smallest k for which 2
m′−m + 2m

′−m+1 + · · · + 2m
′−m+k−1 ≥ λ.

Solving the inequality gives k ≥ log
2
(2log2 λ−m

′+m + 1) and the

space complexity of HINT
m

is O(n · k) □
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For the computational cost of range queries in terms of conducted

comparisons, in the worst case, O(n) intervals are assigned to the

first relevant partition Pm,f at levelm and O(n) comparisons are

required. To estimate the expected cost of range query evaluation in

terms of conducted comparisons, we assume a uniform distribution

of intervals to partitions and random query intervals.

Lemma 4. The expected number of HINTm partitions for which
we have to conduct comparisons is four.

Proof. At the last level of the indexm, we definitely have to do

comparisons in the first and the last partition (which are different

in the worst case). At level m − 1, for each of the first and last

partitions, we have a 50% chance to avoid comparisons, due to

Lemma 2. Hence, the expected number of partitions for which we

have to perform comparisons at levelm − 1 is 1. Similarly, at level

m − 2 each of the yet active first/last partitions has a 50% chance to

avoid comparisons. Overall, for the worst-case conditions, wherem
is large and q is long, the expected number of partitions, for which

we need to perform comparisons is 2 + 1 + 0.5 + 0.25 + · · · = 4. □

Theorem 2. The expected number of comparisons during query
evaluation over HINTm is O(n/2m ).

Proof. For each query, we expect to conduct comparisons at

least in the first and the last relevant partitions at level m. The

expected number of intervals, in each of these two partitions, is

O(n/2m ), considering Lemma 3 and assuming a uniform distribu-

tion of the intervals in the partitions. In addition, due to Lemma 4,

the number of expected additional partitions that require compar-

isons is 2 and each of these two partitions is expected to also hold

at most O(n/2m ) intervals, by Lemma 3 on the levels abovem and

using the truncated intervals after their assignment to levelm (see

Algorithm 1). Hence, q is expected to be compared with O(n/2m )
intervals in total and the cost of each such comparison is O(1). □

3.3 Settingm
As shown in Section 3.2.3, the space requirements and the search

performance of HINT
m

depend on the value ofm. For large values

ofm, the cost of accessing comparison-free results will dominate

the computational cost of comparisons. This section presents an

analytical study for estimatingmopt : the smallest value ofm, which

is expected to result in a HINT
m

of search performance close to

the best possible, while achieving the lowest possible space re-

quirements. Our study uses simple statistics namely, the number of

intervals n = |S|, the mean length λs of data intervals and the mean

length λq of query intervals. We assume that the endpoints and the

lengths of both intervals and queries are uniformly distributed.

The overall cost of query evaluation consists of (1) the cost for

determining the relevant partitions per level, denoted by Cp , (2)
the cost of conducting comparisons between data intervals and the

query, denoted by Ccmp , and (3) the cost of accessing query results

in the partitions for which we do not have to conduct comparisons,

denoted by Cacc . Cost Cp is negligible, as the partitions are deter-

mined by a small numberm of bit-shifting operations. To estimate

Ccmp , we need to estimate the number of intervals in the partitions

whereat we need to conduct comparisons and multiply this by the

expected cost βcmp per comparison. To estimate Cacc , we need to

estimate the number of intervals in the corresponding partitions and

multiply this by the expected cost βacc of (sequentially) accessing
and reporting one interval. βcmp and βacc are machine-dependent

and can easily be estimated by experimentation.

According to Algorithm 3, unless λq is smaller than the length

of a partition at levelm, there will be two partitions that require

comparisons at levelm, one partition at levelm − 1, etc. with the

expected number of partitions being at most four (see Lemma 4).

Hence, we can assume that Ccmp is practically dominated by the

cost of processing two partitions at the lowest levelm. As each parti-

tion at levelm is expected to have n/2m intervals (see Lemma 3), we

have Ccmp = βcmp · n/2
m
. Then, the number of accessed intervals

for which we expect to apply no comparisons is |Q |−2·n/2m , where

|Q | is the total number of expected query results. Under this, we

haveCacc = βacc · (|Q | −2 ·n/2
m ). We can estimate |Q | using the se-

lectivity analysis for (multidimensional) intervals and range queries

in [28] as |Q | = n ·
λs+λq

Λ , whereΛ is the length of the entire domain

with all intervals in S (i.e., Λ = max∀s ∈S s .end −min∀s ∈S s .st ).
WithCcmp andCacc , we now discuss how to estimatemopt . First,

we gradually increasem from 1 up to its max valuem′ (determined

by Λ), and compute the expected cost Ccmp + Cacc . Form = m′,
HINT

m
corresponds to the comparison-free HINT with the lowest

expected cost. Then, we select asmopt the lowest value ofm for

which Ccmp +Cacc converges to the cost of them =m′ case.

3.4 Updates
We handle insertions to an existing HINT or HINT

m
index by

calling Algorithm 1 for each new interval s . Small adjustments

are needed for HINT
m

to add s to the originals division at the

first partition assignment, i.e., to PO
ℓ,a or PO

ℓ,b , and to the replicas

division for every other partition, i.e., to PR
ℓ,a or PR

ℓ,b Finally, we

handle deletions using tombstones, similarly to previous studies

[22, 27] and recent indexing approaches [17]. Given an interval s
for deletion, we first search the index to locate all partitions that

contain s (both as original and as replica) and then, replace the id of

s by a special “tombstone” id, which signals the logical deletion.

4 OPTIMIZING HINTm

In this section, we discuss optimization techniques, which greatly

improve the performance of HINT
m

(and HINT) in practice. First,

we show how to reduce the number of partitions in HINT
m

where

comparisons are performed and how to avoid accessing unnecessary

data. Next, we show how to handle very sparse or skewed data

at each level of HINT/HINT
m
. Another (orthogonal) optimization

is decoupling the storage of the interval ids with the storage of

interval endpoints in each partition. Finally, we revisit updates

under the prism of these optimizations.

4.1 Subdivisions and space decomposition
Recall that, at each level ℓ of HINTm , every partition Pℓ,i is divided

into PO
ℓ,i (holding originals) and P

R
ℓ,i (holding replicas). We propose

to further divide each PO
ℓ,i into P

Oin
ℓ,i and P

Oaf t

ℓ,i , so that POin
ℓ,i (resp.

P
Oaf t

ℓ,i ) holds the intervals from POin
ℓ,i that end inside (resp. after)

partition Pℓ,i . Similarly, each PR
ℓ,i is divided into PRin

ℓ,i and P
Raf t
ℓ,i .
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Subdivisions of HINTm

P2,0 P2,1 P2,2 P2,3

q<latexit sha1_base64="wcPClqce5S6ca0CjGvxYnUWqWCM=">AAACD3icbVC7SgNBFL0bXzG+Vi1tBoNiIWE3iFoGbeyMYB6QrMvsZDYZMvtgZlYIy/6Bjb9iY6GIra2df+Mk2SImHhg4nHMvd87xYs6ksqwfo7C0vLK6VlwvbWxube+Yu3tNGSWC0AaJeCTaHpaUs5A2FFOctmNBceBx2vKG12O/9UiFZFF4r0YxdQLcD5nPCFZacs3juptWT6vZQ3rrpizMsi5JYjQrYl9lmWuWrYo1AVokdk7KkKPumt/dXkSSgIaKcCxlx7Zi5aRYKEY4zUrdRNIYkyHu046mIQ6odNJJngwdaaWH/EjoFyo0UWc3UhxIOQo8PRlgNZDz3lj8z+skyr90dMw4UTQk00N+wpGK0Lgc1GOCEsVHmmAimP4rIgMsMFG6wpIuwZ6PvEia1Yp9XrHvzsq1q7yOIhzAIZyADRdQgxuoQwMIPMELvMG78Wy8Gh/G53S0YOQ7+/AHxtcvmo6caQ==</latexit>

POin
2,2 [ P

Oaft

2,2

<latexit sha1_base64="lDpirtbJHm3AKbcQh410FFelxBA=">AAACEXicbVC7SgNBFJ31GeNr1dJmMAgpJOxGUcugjZ0RzAOSdZmdzCZDZh/M3BXCsr9g46/YWChia2fn3zhJtoiJBwYO59zLnXO8WHAFlvVjLC2vrK6tFzaKm1vbO7vm3n5TRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfZbj0wqHoX3MIqZE5B+yH1OCWjJNct1N62enGYP6a2b8jDLujSJ8axIfNBq6polq2JNgBeJnZMSylF3ze9uL6JJwEKggijVsa0YnJRI4FSwrNhNFIsJHZI+62gakoApJ50kyvCxVnrYj6R+IeCJOruRkkCpUeDpyYDAQM17Y/E/r5OAf+nooHECLKTTQ34iMER4XA/ucckoiJEmhEqu/4rpgEhCQZdY1CXY85EXSbNasc8r9t1ZqXaV11FAh+gIlZGNLlAN3aA6aiCKntALekPvxrPxanwYn9PRJSPfOUB/YHz9AksvnVY=</latexit>

POin
2,3 [ P

Oaft

2,3 {

<latexit sha1_base64="Wxz4rdAdfw9ak5g3+cHEOIyR6aE=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBylJEfVY9OLNCvYD2hg22227dLMJuxuxhPwVLx4U8eof8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3Cyura+kZxs7S1vbO7Z++XWypKJKFNEvFIdgKsKGeCNjXTnHZiSXEYcNoOxtdTv/1IpWKRuNeTmHohHgo2YARrI/l2uZc1/LR26mYP6a2fMpFlvl1xqs4MaJm4OalAjoZvf/X6EUlCKjThWKmu68TaS7HUjHCalXqJojEmYzykXUMFDqny0tntGTo2Sh8NImlKaDRTf0+kOFRqEgamM8R6pBa9qfif10304NIzD8WJpoLMFw0SjnSEpkGgPpOUaD4xBBPJzK2IjLDERJu4SiYEd/HlZdKqVd3zqnt3Vqlf5XEU4RCO4ARcuIA63EADmkDgCZ7hFd6szHqx3q2PeWvBymcO4A+szx/E/JRH</latexit>

}POin
2,1

<latexit sha1_base64="n4FZWHQUp3a8Xp6vVhXs+7BWZag=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCBylJEfVY9OKxiv2ANobNdtsu3WzC7kYsIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC2LOlHacb6uwsrq2vlHcLG1t7+zu2fvllooSSWiTRDySnQArypmgTc00p51YUhwGnLaD8fXUbz9SqVgk7vUkpl6Ih4INGMHaSL5d7mUNP62dutlDeuenTGSZb1ecqjMDWiZuTiqQo+HbX71+RJKQCk04VqrrOrH2Uiw1I5xmpV6iaIzJGA9p11CBQ6q8dHZ7ho6N0keDSJoSGs3U3xMpDpWahIHpDLEeqUVvKv7ndRM9uPTMQ3GiqSDzRYOEIx2haRCozyQlmk8MwUQycysiIywx0SaukgnBXXx5mbRqVfe86t6eVepXeRxFOIQjOAEXLqAON9CAJhB4gmd4hTcrs16sd+tj3lqw8pkD+APr8wfJmpRK</latexit>

}PRin
2,1
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Figure 8: Partition subdivisions in HINTm (level ℓ = 2)

Range queries that overlap with multiple partitions. Con-
sider a range query q, which overlaps with a sequence of more
than one partitions at level ℓ. As already discussed, if we have to

conduct comparisons in the first such partition Pℓ,f , we should do

so for all intervals in PO
ℓ,f and PR

ℓ,f . By subdividing PO
ℓ,f and PR

ℓ,f ,

we get the following lemma:

Lemma 5. If Pℓ,f , Pℓ,l (1) each interval s in P
Oin
ℓ,f ∪P

Rin
ℓ,f overlaps

with q iff s .end ≥ q.st ; and (2) all intervals s in P
Oaf t

ℓ,f and P
Raf t
ℓ,f are

guaranteed to overlap with q.

Proof. Follows directly from the fact that q starts inside Pℓ,f
but ends after Pℓ,f . □

Hence, we need just one comparison for each interval in POin
ℓ,f ∪

PRin
ℓ,f , whereas we can report all intervals P

Oaf t

ℓ,f ∪ P
Raf t
ℓ,f as query

results without any comparisons. As already discussed, for all parti-

tions Pℓ,i between Pℓ,f and Pℓ,l , we just report intervals in POin
ℓ,i ∪

P
Oaf t

ℓ,i as results, without any comparisons, whereas for the last par-

tition Pℓ,l , we perform one comparison per interval in POin
ℓ,l ∪P

Oaf t

ℓ,l .

Range queries that overlapwith a single partition. If the range
query q overlaps only one partition Pℓ,f at level ℓ, we can use

following lemma to minimize the necessary comparisons:

Lemma 6. If Pℓ,f = Pℓ,l then

• each interval s in POin
ℓ,f overlaps withq iff s .st ≤ q.end∧q.st ≤

s .end ,
• each interval s in P

Oaf t

ℓ,f overlaps with q iff s .st ≤ q.end ,

• each interval s in PRin
ℓ,f overlaps with q iff s .end ≥ q.st ,

• all intervals in P
Raf t
ℓ,f overlap with q.

Proof. All intervals s ∈ P
Oaf t

ℓ,f end after q, so s .st ≤ q.end

suffices as an overlap test. All intervals s ∈ PRin
ℓ,f start before q, so

s .st ≤ q.end suffices as an overlap test. All intervals s ∈ P
Raf t
ℓ,f start

before and end after q, so they are guaranteed results. □

Overall, the subdivisions help us to minimize the number of

intervals in each partition, for which we have to apply comparisons.

Figure 8 shows the subdivisions which are accessed by query q
at level ℓ = 2 of a HINT

m
index. In partition Pℓ,f = P2,1, all four

subdivisions are accessed, but comparisons are needed only for

intervals in POin
2,1 and PRin

2,1 . In partition P2,2, only the originals (in

POin
2,2 and P

Oaf t
2,2 ) are accessed and reported without any compar-

isons. Finally, in Pℓ,l = P2,3, only the originals (in POin
2,3 and P

Oaf t
2,3 )

are accessed and compared to q.

Table 3: Sort orders that can be beneficial

subdivision beneficial sorting necessary data

POin
ℓ,i by s .st or by s .end s .id, s .st, s .end

P
Oaf t
ℓ,i by s .st s .id, s .st

PRin
ℓ,i by s .end s .id, s .end

P
Raf t
ℓ,i no sorting s .id

4.1.1 Sorting the intervals in each subdivision. We can keep the

intervals in each subdivision sorted, in order to reduce the number

of comparisons for queries that access them. For example, let us

examine the last partition Pℓ,l that overlaps with a query q at a level

ℓ. If the intervals s in POin
ℓ,l are sorted on their start endpoint (i.e.,

s .st ), we can simply access and report the intervals until the first

s ∈ POin
ℓ,l , such that s .st > q.end . Or, we can perform binary search

to find the first s ∈ POin
ℓ,l , such that s .st > q.end and then scan and

report all intervals before s . Table 3 (second column) summarizes

the sort orders for each of the four subdivisions of a partition that

can be beneficial in range query evaluation. For a subdivision POin
ℓ,i ,

intervals may have to be compared based on their start point (if

Pℓ,i = Pℓ,f ), or based on their end point (if Pℓ,i = Pℓ,l ), or based on
both points (if Pℓ,i = Pℓ,f = Pℓ,l ). Hence, we choose to sort based

on either s .st or s .end to accommodate two of these three cases.

For a subdivision P
Oaf t

ℓ,i , intervals may only have to be compared

based on their start point (if Pℓ,i = Pℓ,l ). For a subdivision PRin
ℓ,i ,

intervals may only have to be compared based on their end point (if

Pℓ,i = Pℓ,f ). Last, for a subdivision P
Raf t
ℓ,i , there is never any need

to compare the intervals, so, no order provides any search benefit.

4.1.2 Storage optimization. So far, we have assumed that each

interval s is stored in the partitions whereto s is assigned as a

triplet ⟨s .id, s .st , s .end⟩. However, if we split the partitions into

subdivisions, we do not need to keep all information of the intervals

in them. Specifically, for each subdivision POin
ℓ,i , we may need to

use s .st and/or s .end for each interval s ∈ POin
ℓ,i , while for each

subdivision P
Oaf t

ℓ,i , we may need to use s .st for each s ∈ POin
ℓ,i , but

we will never need s .end . From the intervals s of each subdivision

PRin
ℓ,i , we may need s .end , but we will never use s .st . Finally, for

each subdivision PRin
ℓ,i , we just have to keep the s .id identifiers of

the intervals. Table 3 (third column) summarizes the data that we

need to keep from each interval in the subdivisions of each partition.

Since each interval s is stored as original just once in the entire

index, but as replica in possibly multiple partitions, space can be

saved by storing only the necessary data, especially if the intervals

span multiple partitions. Last, note that even when we do not apply

the subdivisions, but just use divisions PO
ℓ,i and P

R
ℓ,i (as suggested

in Section 3.2), we do not have to store the start points s .st of all
intervals in PR

ℓ,i , since they are never used in comparisons.

4.2 Handling data skewness and sparsity
Data skewness and sparsity may cause many partitions to be empty,

especially at the lowest levels of HINT (i.e., large values of ℓ). Re-

call that a query accesses a sequence of multiple PO
ℓ,i partitions at
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each level ℓ. Since the intervals are physically distributed in the

partitions, this results into the unnecessary accessing of empty

partitions and may cause cache misses. We propose a storage orga-

nization where all PO
ℓ,i divisions at the same level ℓ are merged into

a single table TO
ℓ

and an auxiliary index is used to find each non-

empty division.
2
The auxiliary index locates the first non-empty

partition, which is greater than or equal to the ℓ-prefix of q.st
(i.e., via binary search or a binary search tree). From thereon, the

nonempty partitions which overlap with the query interval are

accessed sequentially and distinguished with the help of the auxil-

iary index. Hence, the contents of the relevant PO
ℓ,i ’s to each query

are always accessed sequentially. Figure 9(a) shows an example at

level ℓ = 4 of HINT
m
. From the total 2

ℓ = 16 PO partitions at that

level, only 5 are nonempty (shown in grey at the top of the figure):

PO
4,1, P

O
4,5, P

O
4,6, P

O
4,8, P

O
4,13. All 9 intervals in them (sorted by start

point) are unified in a single table TO
4

as shown at the bottom of

the figure (the binary representations of the interval endpoints are

shown). At the moment, ignore the ids column for TO
4

at the right

of the figure. The sparse index for TO
4

has one entry per nonempty

partition pointing to the first interval in it. For the query in the

example, the index is used to find the first nonempty partition PO
4,5,

for which the id is greater than or equal to the 4-bit prefix 0100 of

q.st . All relevant non-empty partitions PO
4,5, P

O
4,6, P

O
4,8 are accessed

sequentially fromTO
4
, until the position of the first interval of PO

4,13.

Searching for the first partition PO
ℓ,f that overlaps with q at each

level can be quite expensive when numerous nonempty partitions

exist. To alleviate this issue, we suggest adding to the auxiliary

index, a link from each partition PO
ℓ,i to the partition PO

ℓ−1, j at the

level above, such that j is the smallest number greater than or equal

to i ÷ 2, for which partition PO
ℓ−1, j is not empty. Hence, instead of

performing binary search at level ℓ−1, we use the link from the first

partition PO
ℓ,f relevant to the query at level ℓ and (if necessary) apply

a linear search backwards starting from the pointed partition PO
ℓ−1, j

to identify the first non-empty partition PO
ℓ−1,f that overlaps with

q. Figure 9(b) shows an example, where each nonempty partition

at level ℓ is linked with the first nonempty partition with greater

than or equal prefix at the level ℓ − 1 above. Given query example

q, we use the auxiliary index to find the first nonempty partition

PO
4,5 which overlaps with q and also sequentially access PO

4,6 and

PO
4,8. Then, we follow the pointer from PO

4,5 to P
O
3,4 to find the first

nonempty partition at level 3, which overlaps with q. We repeat

this to get partition PO
2,3 at level 2, which however is not guaranteed

to be the first one overlapping with q, so we go backwards to PO
2,3.

4.3 Reducing cache misses
At most levels of HINT

m
, no comparisons are conducted and the

only operations are processing the interval ids which qualify the

query. In addition, even for the levels ℓ where comparisons are

required, these are only restricted to the first and the last partitions

PO
ℓ,f and PO

ℓ,l that overlap with q and no comparisons are needed for

2
For simplicity, we discuss this organization when a partition Pℓ,i is divided into

PO
ℓ,i and PR

ℓ,i ; the same idea can be straightforwardly applied also when the four

subdivisions discussed in Section 4.1.2 are used.

Storage optimization 
(sparse 1a representation + columnar 

decomposition)

query

[00010, 01011]
[00011, 01001]
[01010, 01101]
[01100, 11011]
[01100, 11101]
[01101, 10001]
[10001, 11001]
[11010, 11101]
[11011, 11011]

0001 0101 0110 1000 1101

0001
0101
0110
1000
1101

index for 
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PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

0001 0101 0110 1000 1101
<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

000 100 110
<latexit sha1_base64="H4tqYvYuQ1+nveGNrF2ZIdG3EO8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdq+ix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5ccePt91iyS27U6BF4mWkBBlq3eJXpxeRRFBpCMdatz03Nn6KlWGE03Ghk2gaYzLEfdq2VGJBtZ9ODx6jI6v0UBgpW9Kgqfp7IsVC65EIbKfAZqDnvYn4n9dOTHjpp0zGiaGSzBaFCUcmQpPvUY8pSgwfWYKJYvZWRAZYYWJsRgUbgjf/8iJpnJa987J7d1aqXmVx5OEADuEYPLiAKtxADepAQMAzvMKbo5wX5935mLXmnGxmH/7A+fwBxOyPuw==</latexit>

PO
3,0

<latexit sha1_base64="MAx/CuT/fvmMdT/9yVYpn+CQOe8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1bnp2Uhk/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukcVr2zsvuXaVUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDywiPvw==</latexit>

PO
3,4

<latexit sha1_base64="tjb9S/HJd6ic01OHODgrcvhoHnA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72PQizcjmIcka5idzCZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uIOZMG9f9dnILi0vLK/nVwtr6xuZWcXunrqNEEVojEY9UM8CaciZpzTDDaTNWFIuA00YwuB77jSeqNIvkvRnG1Be4J1nICDZWeqh20pOj89HjbadYcsvuBGieeBkpQYZqp/jV7kYkEVQawrHWLc+NjZ9iZRjhdFRoJ5rGmAxwj7YslVhQ7aeTg0fowCpdFEbKljRoov6eSLHQeigC2ymw6etZbyz+57USE176KZNxYqgk00VhwpGJ0Ph71GWKEsOHlmCimL0VkT5WmBibUcGG4M2+PE/qx2XvrOzenZYqV1kcediDfTgEDy6gAjdQhRoQEPAMr/DmKOfFeXc+pq05J5vZhT9wPn8AzhaPwQ==</latexit>

PO
3,6

01
<latexit sha1_base64="uzlyRf/M9r97HVQzjGQjeoVXeIk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Tdquix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5OR0/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukUSl752X37qxUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDx/iPvQ==</latexit>

PO
2,3

<latexit sha1_base64="NDkr26UNtYC+VeLD2BhOvyvRzBg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qvbRy5k0eb3vFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS987J7Vy3VrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AxOqPuw==</latexit>

PO
2,1

11

query

9
13
52
78
15
3
24
82
7

ids column for 
<latexit sha1_base64="BzRUPY1c1NWhHNvTLBdy3curBHY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FL96s0C9p15JNs21okl2SrFCW/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O4WV1bX1jeJmaWt7Z3evvH/Q0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY30z99hNVmkWyYSYx9QUeShYygo2VHhr99Dx7TO+yfrniVt0Z0DLxclKBHPV++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRde/PK7XrPI4iHMExnIIHl1CDW6hDEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifP7rfkFw=</latexit>

TO
4

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

(a) auxiliary index

Storage optimization 
(sparse 1a representation)

query

[00010, 01011]
[00011, 01001]
[01010, 01101]
[01100, 11011]
[01100, 11101]
[01101, 10001]
[10001, 11001]
[11010, 11101]
[11011, 11011]

0001 0101 0110 1000 1101

0001
0101
0110
1000
1101

index for 
<latexit sha1_base64="2+o+7w4kyTCdpO5BDAmLZnncFis=">AAACCHicbZC7SgNBFIbPeo3xtmpp4WAQLCTsSkQbIWhjZ4TcIFmX2ckkGTJ7YWZWCMuWNr6KjYUitj6CnW/jZLOFJv4w8POdczhzfi/iTCrL+jYWFpeWV1YLa8X1jc2tbXNntynDWBDaICEPRdvDknIW0IZiitN2JCj2PU5b3uh6Um89UCFZGNTVOKKOjwcB6zOClUaueVB3k0p6n9ym6BJ1PTYgcYRqmp2wjLpmySpbmdC8sXNTglw11/zq9kIS+zRQhGMpO7YVKSfBQjHCaVrsxpJGmIzwgHa0DbBPpZNkh6ToSJMe6odCv0ChjP6eSLAv5dj3dKeP1VDO1ibwv1onVv0LJ2FBFCsakOmifsyRCtEkFdRjghLFx9pgIpj+KyJDLDBROruiDsGePXneNE/L9lnZuquUqld5HAXYh0M4BhvOoQo3UIMGEHiEZ3iFN+PJeDHejY9p64KRz+zBHxmfP2QnmPE=</latexit>

TO
4 =

[
PO

4,i

<latexit sha1_base64="BzRUPY1c1NWhHNvTLBdy3curBHY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FL96s0C9p15JNs21okl2SrFCW/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O4WV1bX1jeJmaWt7Z3evvH/Q0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY30z99hNVmkWyYSYx9QUeShYygo2VHhr99Dx7TO+yfrniVt0Z0DLxclKBHPV++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRde/PK7XrPI4iHMExnIIHl1CDW6hDEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifP7rfkFw=</latexit>

TO
4

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

0001 0101 0110 1000 1101
<latexit sha1_base64="x3jKRJXcqGaRinuwV8RSvTHMyfc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHLmTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC971bJ7VynVrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AyDqPvQ==</latexit>

PO
4,1

<latexit sha1_base64="drD3vcwZ0CHTePfNlDoy6XtQYBY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdadFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGlnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukeV72qmX3rlKqXWVx5OEIjuEUPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBzk6PwQ==</latexit>

PO
4,5

<latexit sha1_base64="xyqAhH08AWqe3R/gXdbYIP9YywU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcx6MWbEcxDkjXMTmaTITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGF5P/OYTVZpF8t6MYuoL3JcsZAQbKz3UHm+7aeXkfNwtltyyOwVaJF5GSpCh1i1+dXoRSQSVhnCsddtzY+OnWBlGOB0XOommMSZD3KdtSyUWVPvp9OAxOrJKD4WRsiUNmqq/J1IstB6JwHYKbAZ63puI/3ntxISXfspknBgqyWxRmHBkIjT5HvWYosTwkSWYKGZvRWSAFSbGZlSwIXjzLy+SxmnZOyu7d5VS9SqLIw8HcAjH4MEFVOEGalAHAgKe4RXeHOW8OO/Ox6w152Qz+/AHzucPz9OPwg==</latexit>

PO
4,6

<latexit sha1_base64="AG7zmrLd34AOkvOwyh4q6bw5EFE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqdhj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qj7e9tHJWnfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMWHVT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPC97F2X3rlKqXWVx5OEIjuEUPLiEGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB0t2PxA==</latexit>

PO
4,8

<latexit sha1_base64="fTqKR/CCgB46DLDx1yP6FQMzK/s=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFewHtmvJptk2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXEbz5RpZkU92YUUz/CfcFCRrCx0kPt8babVk68s3G3WHLL7hRokXgZKUGGWrf41elJkkRUGMKx1m3PjY2fYmUY4XRc6CSaxpgMcZ+2LRU4otpPpxeP0ZFVeiiUypYwaKr+nkhxpPUoCmxnhM1Az3sT8T+vnZjw0k+ZiBNDBZktChOOjEST91GPKUoMH1mCiWL2VkQGWGFibEgFG4I3//IiaZyWvfOye1cpVa+yOPJwAIdwDB5cQBVuoAZ1ICDgGV7hzdHOi/PufMxac042sw9/4Hz+AD0kj/o=</latexit>

PO
4,13

000 100 110
<latexit sha1_base64="H4tqYvYuQ1+nveGNrF2ZIdG3EO8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdq+ix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5ccePt91iyS27U6BF4mWkBBlq3eJXpxeRRFBpCMdatz03Nn6KlWGE03Ghk2gaYzLEfdq2VGJBtZ9ODx6jI6v0UBgpW9Kgqfp7IsVC65EIbKfAZqDnvYn4n9dOTHjpp0zGiaGSzBaFCUcmQpPvUY8pSgwfWYKJYvZWRAZYYWJsRgUbgjf/8iJpnJa987J7d1aqXmVx5OEADuEYPLiAKtxADepAQMAzvMKbo5wX5935mLXmnGxmH/7A+fwBxOyPuw==</latexit>

PO
3,0

<latexit sha1_base64="MAx/CuT/fvmMdT/9yVYpn+CQOe8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdreix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1bnp2Uhk/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukcVr2zsvuXaVUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDywiPvw==</latexit>

PO
3,4

<latexit sha1_base64="tjb9S/HJd6ic01OHODgrcvhoHnA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72PQizcjmIcka5idzCZDZmaXmVkhLPkKLx4U8ernePNvnCR70MSChqKqm+6uIOZMG9f9dnILi0vLK/nVwtr6xuZWcXunrqNEEVojEY9UM8CaciZpzTDDaTNWFIuA00YwuB77jSeqNIvkvRnG1Be4J1nICDZWeqh20pOj89HjbadYcsvuBGieeBkpQYZqp/jV7kYkEVQawrHWLc+NjZ9iZRjhdFRoJ5rGmAxwj7YslVhQ7aeTg0fowCpdFEbKljRoov6eSLHQeigC2ymw6etZbyz+57USE176KZNxYqgk00VhwpGJ0Ph71GWKEsOHlmCimL0VkT5WmBibUcGG4M2+PE/qx2XvrOzenZYqV1kcediDfTgEDy6gAjdQhRoQEPAMr/DmKOfFeXc+pq05J5vZhT9wPn8AzhaPwQ==</latexit>

PO
3,6

01
<latexit sha1_base64="uzlyRf/M9r97HVQzjGQjeoVXeIk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5Tdquix6MWbFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uaXlldS2/XtjY3NreKe7uNXSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtcTv/lElWaRvDejmPoC9yULGcHGSg+1blo5OR0/3naLJbfsToEWiZeREmSodYtfnV5EEkGlIRxr3fbc2PgpVoYRTseFTqJpjMkQ92nbUokF1X46PXiMjqzSQ2GkbEmDpurviRQLrUcisJ0Cm4Ge9ybif147MeGlnzIZJ4ZKMlsUJhyZCE2+Rz2mKDF8ZAkmitlbERlghYmxGRVsCN78y4ukUSl752X37qxUvcriyMMBHMIxeHABVbiBGtSBgIBneIU3RzkvzrvzMWvNOdnMPvyB8/kDx/iPvQ==</latexit>

PO
2,3

<latexit sha1_base64="NDkr26UNtYC+VeLD2BhOvyvRzBg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtFj0Ys3K9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuJKs0ieW/GMfUFHkgWMoKNlR7qvbRy5k0eb3vFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS987J7Vy3VrrI48nAEx3AKHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AxOqPuw==</latexit>
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Figure 9: Storage and indexing optimizations

the partitions that are in-between. Summing up, when accessing

any (sub-)partition for which no comparison is required, we do

not need any information about the intervals, except for their ids.

Hence, in our implementation, for each (sub-)partition, we store

the ids of all intervals in it in a dedicated array (the ids column) and
the interval endpoints (wherever necessary) in a different array.

3
If

we need the id of an interval that qualifies a comparison, we can

access the corresponding position of the ids column. This storage

organization greatly improves search performance by reducing the

cache misses, because for the intervals that do not require compar-

isons, we only access their ids and not their interval endpoints. This

optimization is orthogonal to and applied in combination with the

strategy discussed in Section 4.2, i.e., we store all PO divisions at

each level ℓ in a single table TO
ℓ
, which is decomposed to a column

that stores the ids and another table for the endpoint data of the

intervals. An example of the ids column is shown in Figure 9(a). If,

for a sequence of partitions at a level, we do not have to perform

any comparisons, we just access the sequence of the interval ids

that are part of the answer, which is implied by the position of the

first such partition (obtained via the auxiliary index). In this exam-

ple, all intervals in PO
4,5 and P

O
4,6 are guaranteed to be query results

without any comparisons and they can be sequentially accessed

from the ids column without having to access the endpoints of the

intervals. The auxiliary index guides the search by identifying and

distinguishing between partitions for which comparisons should be

conducted (e.g., PO
4,8) and those for which they are not necessary.

3
Similar to the previous section, this storage optimization can be straightforwardly

employed also when a partition is divided into POin
ℓ,i , P

Oaf t
ℓ,i , PRin

ℓ,i , P
Raf t
ℓ,i .
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Table 4: Characteristics of real datasets

BOOKS WEBKIT TAXIS GREEND

Cardinality 2,312,602 2,347,346 172,668,003 110,115,441
Size [MBs] 27.8 28.2 2072 1321

Domain [sec] 31,507,200 461,829,284 31,768,287 283,356,410
Min duration [sec] 1 1 1 1

Max duration [sec] 31,406,400 461,815,512 2,148,385 59,468,008
Avg. duration [sec] 2,201,320 33,206,300 758 15

Avg. duration [%] 6.98 7.19 0.0024 0.000005

Table 5: Parameters of synthetic datasets

parameter values (defaults in bold)
Domain length 32M, 64M,128M, 256M, 512M

Cardinality 10M, 50M, 100M, 500M, 1B

α (interval length) 1.01, 1.1, 1.2, 1.4, 1.8
σ (interval position) 10K, 100K, 1M, 5M, 10M

4.4 Updates
A version of HINT

m
that uses all techniques from Sections 4.1-4.2,

is optimized for query operations. Under this premise, the index

cannot efficiently support individual updates, i.e., new intervals

inserted one-by-one. Dealing with updates in batches will be a

better fit. This is a common practice for other update-unfriendly

indices, e.g., the inverted index in IR. Yet, for mixed workloads (i.e.,

with both queries and updates), we adopt a hybrid setting where a

delta index is maintained to digest the latest updates as discussed

in Section 3.4,
4
and a fully optimized HINT

m
, which is updated

periodically in batches, holds older data supporting deletions with

tombstones. Both indices are probed when a query is evaluated.

5 EXPERIMENTAL ANALYSIS
We compared our hierarchical index, detailed in Sections 3 and 4

against the interval tree [16] (code from [18]), the timeline index

[19], the (adaptive) period index [4], and a uniform 1D-grid. All

indices were implemented in C++ and compiled using gcc (v4.8.5)
with -O3. 5 The tests ran on a dual Intel(R) Xeon(R) CPU E5-2630 v4

clocked at 2.20GHz with 384 GBs of RAM, running CentOS Linux.

5.1 Data and queries
We used 4 collections of real time intervals from previous works;

Table 4 summarizes their characteristics. BOOKS [7] contains the

periods during which books were lent out by Aarhus libraries in

2013 (https://www.odaa.dk). WEBKIT [7, 8, 14, 30] records the file

history in the git repository of the Webkit project from 2001 to

2016 (https://webkit.org); the intervals indicate the periods dur-

ing which a file did not change. TAXIS [9] includes the time pe-

riods of taxi trips (pick-up and drop-off timestamps) from NYC

(https://www1.nyc.gov/site/tlc/index.page) in 2013. GREEND [10,

25] records time periods of power usage from households in Austria

and Italy from January 2010 to October 2014. BOOKS and WEBKIT

contain around 2M intervals each, which are quite long on average;

TAXIS and GREEND contain over 100M relatively short intervals.

We also generated synthetic collections to simulate different

cases for the lengths and the skewness of the input intervals. Table

5 shows the construction parameters for the synthetic datasets and

4
Small adjustments are applied for the POinl,i , P

Oaf t
l,i , PRinl,i , P

Raf t
l,i subdivisions and

the storage optimizations.

5
Source code available in https://github.com/pbour/hint.
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Figure 10: Optimizing HINTm : query evaluation approaches

their default values. The domain of the datasets ranges from 32M

to 512M, which requires index level parameterm to range from 25

to 29 for a comparison-free HINT (similar to the real datasets). The

cardinality ranges from 10M to 1B. The lengths of the intervals were

generated using the random.zipf(α) function in the numpy library.

They follow a zipfian distribution according to the p(x) = x−a
ζ (a)

probability density function, where ζ is the Riemann Zeta function.

A small value of α results in most intervals being relatively long,

while a large value results in the great majority of intervals having

length 1. The positions of the middle points of the intervals are

generated from a normal distribution centered at the middle point µ
of the domain. Hence, the middle point of each interval is generated

by calling numpy’s random.normalvariate(µ,σ). The greater the
value of σ the more spread the intervals are in the domain.

On the real datasets, we ran range queries uniformly distributed

in the domain. On the synthetic, the positions of the queries follow

the distribution of the data. In both cases, the extent of the query

intervals were fixed to a percentage of the domain size (default

0.1%). At each test, we ran 10K random queries, in order to measure

the overall throughput. Measuring query throughput instead of

average time per query makes sense in applications or services that

manage huge volumes of interval data and offer a search interface

to billions of users simultaneously (e.g., public historical databases).

5.2 Optimizing HINT/HINTm

In our first set of experiments, we study the best setting for our

hierarchical index. Specifically, we compare the effectiveness of the

two query evaluation approaches discussed in Section 3.2.1 and

investigate the impact of the optimizations described in Section 4.

5.2.1 Query evaluation approaches on HINTm . We compare the

straightforward top-down approach for evaluating range queries on

HINT
m

that uses solely Lemma 1, against the bottom-up illustrated

in Algorithm 3 which additionally employs Lemma 2. Figure 10

reports the throughput of each approach on BOOKS and TAXIS,

while varying the number of levelsm in the index. Due to lack of

space, we omit the results for WEBKIT and GREEND that follow

exactly the same trend with BOOKS and TAXIS, respectively. We

observe that the bottom-up approach significantly outperforms top-
down for BOOKS while for TAXIS, this performance gap is very

small. As expected, bottom-up performs at its best for inputs that

contain long intervals which are indexed on high levels of index,

i.e., the intervals in BOOKS. In contrast, the intervals in TAXIS are

very short and so, indexed at the bottom level of HINT
m
, while the

majority of the partitions at the higher levels are empty. As a result,

top-down conducts no comparisons at higher levels. For the rest of

our tests, HINT
m

uses the bottom-up approach (i.e., Algorithm 3).
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Figure 11: Optimizing HINTm : subdivisions and space de-
composition

5.2.2 Subdivisions and space decomposition. We next evaluate the

subdivisions and space decomposition optimizations described in Sec-

tion 4.1 for HINT
m
. Note that these techniques are not applicable to

our comparison-free HINT as the index stores only interval ids. Fig-

ure 11 shows the effect of the optimizations on BOOKS and TAXIS,

for different values ofm; similar trends were observed in WEBKIT

and GREEND, respectively. The plots include (1) a base version
of HINT

m
, which employs none of the proposed optimizations,

(2) subs+sort+sopt, with all optimizations activated, (3) subs+sort,
which only sorts the subdivisions (Section 4.1.1) and (iv) subs+sopt,
which uses only the storage optimization (Section 4.1.2). We ob-

serve that the subs+sort+sopt version of HINT
m

is superior to all

three other versions, on all tests. Essentially, the index benefits

from the sub+sort setting only whenm is small, i.e., below 15, at the

expense of increasing the index time compared to base. In this case,

the partitions contain a large number of intervals and therefore,

using binary search or scanning until the first interval that does not

overlap the query range, will save on the conducted comparisons.

On the other hand, the subs+sopt optimization significantly reduces

the space requirements of the index. As a result, the version incurs

a higher cache hit ratio and so, a higher throughput compared to

base is achieved, especially for large values ofm, i.e., higher than

10. The subs+sort+sopt version manages to combine the benefits of

both subs+sort and subs+sopt versions, i.e., high throughput in all

cases, with low space requirements. The effect in the performance

is more obvious in BOOKS because of the long intervals and the

high replication ratio. In view of these results, HINT
m

employs all

optimizations from Section 4.1 for the rest of our experiments.

5.2.3 Handling data skewness & sparsity and reducing cache misses.
Table 6 tests the effect of the handling data skewness & sparsity

Table 6: Optimizing HINT: impact of the skewness & spar-
sity optimization (Section 4.2), default parameters

dataset throughput [queries/sec] index size [MBs]

original optimized original optimized

BOOKS 12098 36173 3282 273

WEBKIT 947 39000 49439 337

TAXIS 2931 31027 10093 7733

GREEND 648 47038 57667 10131
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Figure 12: Optimizing HINTm : impact of handling skewness
& sparsity and reducing cache misses optimizations

optimization (Section 4.2) on the comparison-free version of HINT

(Section 3.1).
6
Observe that the optimization has a great effect

on both the throughput and the size of the index in all four real

datasets, because empty partitions are effectively excluded from

query evaluation and from the indexing process.

Figure 12 shows the effect of either or both of the data skewness &
sparsity (Section 4.2) and the cachemisses optimizations (Section 4.3)

on the performance of HINT
m

for different values ofm. In all cases,

the version of HINT
m

which uses both optimizations is superior to

all other versions. As expected, the skewness & sparsity optimization

helps to reduce the space requirements of the index whenm is large,

because there are many empty partitions in this case at the bottom

levels of the index. At the same time, the cache misses optimization

helps in reducing the number of cache misses in all cases where no

comparisons are needed. Overall, the optimized version of HINTm

converges to its best performance at a relatively small value of

m, where the space requirements of the index are relatively low,

especially on the BOOKS and WEBKIT datasets which contain long

intervals. For the rest of our experiments, HINT
m

employs both

optimizations and HINT the data skewness & sparsity optimization.

6
The cache misses optimization (Section 4.3) is only applicable to HINT

m
.
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Table 7: Statistics and parameter setting

index parameter BOOKS WEBKIT TAXIS GREEND

Period

# levels 4 4 7 8

# coarse partitions 100 100 100 100

Timeline # checkpoints 6000 6000 8000 8000

1D-grid # partitions 500 300 4000 30000

HINT
m

mopt (model) 9 9 16 16

mopt (exps) 10 12 17 17

rep. factor k (model) 6.09 8.98 1.98 1

rep. factor k (exps) 5.13 6.07 2.14 1.0013
avg. comp. part. 3.226 3.538 3.856 2.937

Table 8: Comparing index size [MBs]

index BOOKS WEBKIT TAXIS GREEND

Interval tree 97 115 3125 2241

Period 210 217 2278 1262
Timeline 4916 5671 4203 2525

1D-grid 949 604 2165 1264

HINT 273 337 7733 10131

HINT
m 81 98 2039 1278

Table 9: Comparing index time [sec]

index BOOKS WEBKIT TAXIS GREEND

Interval tree 0.249647 0.333642 47.1913 26.8279

Period 1.14919 1.35353 76.9302 46.3992

Timeline 12.665271 19.242939 40.376573 15.962221

1D-grid 1.26315 0.952408 4.02325 2.23768
HINT 1.70093 11.7671 49.589 36.5143

HINT
m

0.725174 0.525927 22.787983 8.577486

5.2.4 Discussion. Table 7 reports the best values for parameter

m of HINT
m
, denoted by mopt . For each real dataset, we show

(1) mopt (model), estimated by our model in Section 3.3 as the

smallestm value for which the index converges within 3% to its

lowest estimated cost, and (2)mopt (exps), which brings the highest

throughput in our tests. Overall, our model estimates a value of

mopt which is very close to the experimentally best value of m.

Despite a larger gap for WEBKIT, the measured throughput for

the estimatedmopt = 9 is only 5% lower than the best observed

throughput. Further, the table shows the replication factor k of

the index, i.e., the average number of partitions in which each

interval is stored, as predicted by our space complexity analysis

(see Theorem 1) and as measured experimentally. As expected, the

replication factor is high on BOOKS, WEBKIT due to the large

number of long intervals, and low on TAXIS, GREEND where the

intervals are very short and stored at the bottom levels. Although

our analysis uses simple statistics, the predictions are quite accurate.

Finally, the last line Table 7 (avg. comp. part.) shows the average
number of HINT

m
partitions for which comparisons were applied.

Consistently to our analysis in Section 3.2.3, all numbers are below

4, which means that the performance of HINT
m

is very close to the

performance of the comparison-free, but space-demanding HINT.

5.3 Index performance comparison
We next compare the optimized versions of HINT and HINT

m

against the previous work competitors. We start with our tests

on the real datasets. For HINT
m
, we set m to the best value on

each dataset, according to Table 7. Similarly, we set the number of

partitions for 1D-grid, the number of checkpoints for the timeline

index, and the number of levels and number of coarse partitions

for the period index (see Table 7). Table 8 shows the sizes of each

index in memory and Table 9 shows the construction cost of each

index, for the default query extent 0.1%. Regarding space, HINT
m

along with the interval tree and the period index have the lowest

requirements on datasets with long intervals (BOOKS andWEBKIT)

and very similar to 1D-grid in the rest. In TAXIS and GREEND

where the intervals are indexed mainly at the bottom level, the

space requirements of HINT
m

are significantly lower than our

comparison-free HINT due to limiting the number of levels. When

compared to the raw data (see Table 4), HINT
m

is 2 to 3 times bigger

for BOOKS and WEBKIT (which contain many long intervals), and

1 time bigger for GREEND and TAXIS. These ratios are smaller

than the replication ratios k reported in Table 7, due to our storage

optimization (cf. Section 4.1.2). Due to its simplicity, 1D-grid has

the lowest index time across all datasets. Nevertheless, HINT
m

is

the runner up in most of the cases, especially for the biggest inputs,

i.e., TAXIS and GREEND, while in BOOKS and WEBKIT, its index

time is very close to the interval tree.

Figure 13 compares the query throughputs of all indices on

queries of various extents (as a percentage of the domain size).

The first set of bars in each plot corresponds to stabbing queries,
i.e., range queries of 0 extent. We observe that HINT and HINT

m

outperform the competition by almost one order of magnitude,

across the board. In fact, only on GREEND the performance for one

of the competitors, i.e., 1D-grid, comes close to the performance of

our hierarchical indexing. Due to the extremely short intervals in

GREEND (see Table 4) the vast majority of the results are collected

from the bottom level of HINT/HINT
m
, which essentially resem-

bles the evaluation process in 1D-grid. Nevertheless, our indices

are even in this case faster as they require no duplicate elimination.

HINT
m
is the best index overall, as it achieves the performance of

HINT, requiring less space, confirming the findings of our analysis

in Section 3.2.3. As shown in Table 8, HINT always has higher space

requirements than HINT
m
; even up to an order of magnitude higher

in case of GREEND.What is more, since HINT
m

offers the option to

control the occupied space in memory by appropriately setting the

m parameter, it can handle scenarios with space limitations. HINT is

marginally better than HINT
m

only on datasets with short intervals

(TAXIS and GREEND) and only for selective queries. In these cases,

the intervals are stored at the lowest levels of the hierarchy where

HINT
m

typically needs to conduct comparisons to identify results,

but HINT applies comparison-free retrieval.

The next set of tests are on synthetic datasets. In each test, we fix

all but one parameters (domain size, cardinality, α , σ , query extent)

to their default values and varied one (see Table 5). The value ofm
for HINT

m
, the number of partitions for 1D-grid, the number of

checkpoints for the timeline index and the number of levels/coarse

partitions for the period index are set to their best values on each

dataset. The results, shown in Figure 14, follow a similar trend to the

tests on the real datasets. HINT and HINT
m

are always significantly

faster than the competition, . Different to the real datasets, 1D-grid

is steadily outperformed by the other three competitors. Intuitively,

the uniform partitioning of the domain in 1D-grid cannot cope with

the skewness of the synthetic datasets. As expected the domain size,

the dataset cardinality and the query extent have a negative impact

on the performance of all indices. Essentially, increasing the domain

size under a fixed query extent, affects the performance similar to

increasing the query extent, i.e., the queries become longer and
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Figure 13: Comparing throughputs, real datasets
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Figure 14: Comparing throughputs, synthetic datasets

Table 10: Throughput [operations/sec] and total cost [sec]
BOOKS

operation Interval tree Period index 1D-grid
subs+soptHINT

m
HINT

m

queries 1,258 3,088 3,739 14,390 40,311
insertions 5,841 519,904 411,540 2,405,228 3,680,457
deletions 1,142 765 165 2,201 5,928
total cost 9.63 4.52 8.68 1.14 0.41

TAXIS

operation Interval tree Period index 1D-grid
subs+soptHINT

m
HINT

m

queries 2,619 2,695 2,572 8,774 28,596
insertions 61,923 1,026,423 8,347,273 4,407,743 6,745,622

deletions 14,318 21,293 16,236 71,122 90,460
total cost 3.93 3.76 3.95 1.15 0.36

less selective, including more results. Further, the querying cost

grows linearly with the dataset size since the number of query

results are proportional to it. HINT
m

occupies around 8% more

space than the raw data, because the replication factor k is close to

1. In contrast, as α grows, the intervals become shorter, so the query

performance improves. Similarly, when increasing σ the intervals

are more widespread, meaning that the queries are expected to

retrieve fewer results, and the query cost drops accordingly.

5.4 Updates
Finally, we test the efficiency of HINT

m
in updates using both

the update-friendly version of HINT
m

(Section 3.4), denoted by

subs+soptHINT
m
, and the hybrid setting for the fully-optimized

index from Section 4.4, denoted as HINT
m
. We index offline the first

90% of the intervals for each real dataset in batch and then execute a

mixedworkloadwith 10K range queries of 0.1% extent, 5K insertions

of new intervals (randomly selected from the remaining 10% of the

dataset) and 1K random deletions. Table 10 reports our findings for

BOOKS and TAXIS; the results for WEBKIT and GREEND follow

the same trend. Note that we excluded Timeline since the index is

designed for temporal (versioned) data where updates only happen

as new events are appended at the end of the event list, and the

comparison-free HINT, for which our tests have already shown a

similar performance to HINT
m

with higher indexing/storing costs.

Also, all indices handle deletions with “tombstones”. We observe

that both versions of HINT
m

outperform the competition by a wide

margin. An exception arises on TAXIS, as the short intervals are

inserted in only one partition in 1D-grid. The interval tree has in

fact several orders of magnitude slower updates due to the extra cost

of maintaining the partitions in the tree sorted at all time. Overall,

we also observe that the hybrid HINT
m

setting is the most efficient

index as the smaller delta
subs+soptHINT

m
handles insertions faster

than the 90% pre-filled
subs+soptHINT

m
.

6 CONCLUSIONS AND FUTUREWORK
We proposed a hierarchical index (HINT) for intervals, which has

low space complexity and minimizes the number of data accesses

and comparisons during query evaluation. Our experiments on

real and synthetic datasets shows that HINT outperforms previous

work by one order of magnitude in a wide variety of interval data

and query distributions. There are several directions for future

work. First, we plan to study the performance of HINT on selection

queries, based on Allen’s relationships [1] between intervals and

on complex event processing in data streams, based on interval

operators [2]. Second, we plan to investigate extensions of HINT for

supporting queries that combine temporal selections and selections

on additional object attributes or the duration of intervals [4]. Third,

we plan to investigate effective parallelization techniques, taking

advantage of the fact that HINT partitions are independent.
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